

TOPICAL PAST PAPER QUESTIONS WORKBOOK

AS & A Level Mathematics (9709) Paper 1
[Pure Mathematics 1]

,

May/June 2015 - February/March 2022

Chapter 7

Differentiation

 $349.\ 9709_m22_qp_12\ Q:\ 11$

. 0
 · · · · · · · · · · · · · · · · · · ·
•••••
•••••
•••••
•••••
•••••
 •

The function f has a stationary value at x = a and is defined by

$$f(x) = 4(3x - 4)^{-1} + 3x$$
 for $x \ge \frac{3}{2}$.

(b)	Find the value of a and determine the nature of the stationary value.	[3]
	<u></u>	
		ŗ
	29	
		••••••
(c)	The function g is defined by $g(x) = -(3x+1)^{-1} + 3x$ for $x \ge 0$.	
	Determine, making your reasoning clear, whether g is an increasing function,	a decreasing
	function or neither.	[2]
	***	••••••
		•••••••
		••••••

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
<i>O</i> -
40

 $350.\ 9709_s21_qp_12\ Q\hbox{:}\ 3$

The equation of a curve is $y = (x - 3)\sqrt{x + 1} + 3$.	The following points lie on the curve.	Non-exact
values are rounded to 4 decimal places.		

	A(2, k)	B(2.9, 2.8025)	C(2.99, 2.9800)	D(2.999, 2.9980)	E(3, 3)
(a)	Find k , given	ving your answer co	rrect to 4 decimal place	ces.	I
					.0,
(b)	Find the g	radient of AE , givin	g your answer correct	to 4 decimal places.	
				N.	
			200		
			26		
	gradients ectively.	of BE , CE and DE	, rounded to 4 decir	nal places, are 1.9748	, 1.9975 and 1.999
(c)		ing a reason for you f the curve at the po		llues of the four gradie	nts suggest about t [

351. 9709_s21_qp_13 Q: 2

The function f is defined by $f(x) = \frac{1}{3}(2x-1)^{\frac{3}{2}} - 2x$ for $\frac{1}{2} < x < a$. It is given that f is a decreasing function.
Find the maximum possible value of the constant a . [4]
20
<u> </u>
200

352. $9709 w21 qp_12 Q: 9$

The volume $V \, \mathrm{m}^3$ of a large circular mound of iron ore of radius $r \, \mathrm{m}$ is modelled by the equation $V = \frac{3}{2} \left(r - \frac{1}{2} \right)^3 - 1$ for $r \ge 2$. Iron ore is added to the mound at a constant rate of 1.5 m^3 per second.

Find the rate at which the radius of the mound is increasing at the instant when the radius is 5
**

,	[3]

353. 9709_w21_qp_12 Q: 10

(a)

The function f is defined by $f(x) = x^2 + \frac{k}{x} + 2$ for x > 0.

Given that the curve with equation $y = f(x)$ has a stationary point when $x = 2$, find k .	[3]
0-	
	•••••
~~	
	•••••
•••	
	•••••
	•••••

IJ)	Determine the nature of the stationary point.	[2]
		•••••
		•••••
		•••••
c)	Given that this is the only stationary point of the curve, find the range of f.	[2]
c)	Given that this is the only stationary point of the curve, find the range of f.	
c)		
c)		
c)		
c)		
c)		
c)		

354.	. 9709_w21_qp_13 Q: 3	
(a)	Express $5y^2 - 30y + 50$ in the form $5(y + a)^2 + b$, where a and b are constants.	[2]
		• • • • • • • • • • • • • • • • • • • •
(b)	The function f is defined by $f(x) = x^5 - 10x^3 + 50x$ for $x \in \mathbb{R}$.	
	Determine whether f is an increasing function, a decreasing function or neither.	[3]
	<u>~~~</u>	
	A001	
		••••••

 $355.\ 9709_m20_qp_12\ Q:\ 1$

The function f is defined by $f(x) = \frac{1}{3x+2} + x^2$ for $x < -1$.
Determine whether f is an increasing function, a decreasing function or neither. [3]
~~

3	56	0700	m20	an	19	Ω	4
o	oo.	9709	mzv	qρ	12	Q:	4

A curve has equation $y = x^2 - 2x - 3$. A point is moving along the curve in such a way that at P the y-coordinate is increasing at 4 units per second and the x-coordinate is increasing at 6 units per second.	
Find the x -coordinate of P . [4]	

357. 9709_s20_qp_11 Q: 9

The equation of a curve is $y = (3 - 2x)^3 + 24x$.

(a)	Find expressions for $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$.	[4
		60
		Q
	V 0.0	
	•	

3
3
3
3
3
3
>
3
9
[
•••••
•••••
• • • • • • • • • • • • • • • • • • • •

 $358.\ 9709_s20_qp_12\ Q:\ 3$

A	weather	balloon	in the sh	ape of a s	phere i	s being	inflated	by a p	ump. 🛚	Γhe v	olume (of the l	balloo	n is
inc	reasing	at a con	stant rate	e of 600 c	m ³ per	second.	The bal	loon w	as em	pty at	t the sta	rt of p	umpir	ng.

Find the radius of the balloon after 30 seconds.	[2
	0-
	.0
	.0
) `
Find the rate of increase of the radius after 30 seconds.	[3

 $359.\ 9709_s20_qp_12\ Q\hbox{:}\ 10$

(a)	Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$.	[4]
		•••••
		•••••
		>
(b)	Find the coordinates of each of the stationary points on the curve.	[3]
	100 P	
(c)	Determine the nature of each of the stationary points.	[2]
		•••••

 $360.\ 9709_s20_qp_13\ Q:\ 6$

A point P is moving along a curve in such a way that the x -coordinate of P is increasing at a constant	nt
rate of 2 units per minute. The equation of the curve is $y = (5x - 1)^{\frac{1}{2}}$.	

Find the rate at which the y-coordinate is increasing when $x = 1$.	[4]
)
4000	
**	

	Find the value of x when the y-coordinate is increasing at $\frac{5}{8}$ units per minute.
•	
•	
•	
•	
•	
•	
•	
	**
•	***
•	

 $361.\ 9709_w20_qp_11\ \ Q:\ 3$

rate of $50 \mathrm{cm}^3 \mathrm{s}^{-1}$.
Find the rate at which the radius of the balloon is increasing when the radius is 10 cm. [3]

Air is being pumped into a balloon in the shape of a sphere so that its volume is increasing at a constant

362. 9709_w20_qp_11 Q: 6

The equation of a curve is $y = 2 + \sqrt{25 - x^2}$.
Find the coordinates of the point on the curve at which the gradient is $\frac{4}{3}$. [5]
~
10.0

(a)

363. 9709_w20_qp_13 Q: 8

The equation of a curve is $y = 2x + 1 + \frac{1}{2x + 1}$ for $x > -\frac{1}{2}$.

Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$.	[3]
	0,
(0)	
	••••••

••••••		••
		••
		•••
•••••		••
		5
		••
•••••		
		••
••••••		••
	~~~	
•••••		••
	**	
•••••	***	•••
•••••		••







 $364.\ 9709_m19_qp_12\ Q:\ 4$ 

A	curve	has e	equation	v = 0	(2x -	$(1)^{-1}$	+2x.
---	-------	-------	----------	-------	-------	------------	------

Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ .		
		• • • • • • • • • • • • • • • • • • • •
		<u></u>
	<u> </u>	•••••
	-00	
		•••••
•• (		
•	r	





Find the <i>x</i> -coordinates of the stationary points and, showing all necessary we the nature of each stationary point.	[4
	0.
*(C	
70,	
	•••••





 $365.\ 9709_m19_qp_12\ Q{:}\ 5$ 

Two vectors,  $\mathbf{u}$  and  $\mathbf{v}$ , are such that

$$\mathbf{u} = \begin{pmatrix} q \\ 2 \\ 6 \end{pmatrix}$$
 and  $\mathbf{v} = \begin{pmatrix} 8 \\ q - 1 \\ q^2 - 7 \end{pmatrix}$ ,

where q is a constant.

Find the values of $q$ for which $\mathbf{u}$ is perpendicular to $\mathbf{v}$ .	[3]
	<b></b>
***************************************	
<b>10</b> °	
AO O	





, 1	Find the angle between $\mathbf{u}$ and $\mathbf{v}$ when $q = 0$ .
	0,
	<b>20</b>





(i)

 $366.\ 9709_s19_qp_11\ \ Q:\ 7$ 



The diagram shows a three-dimensional shape in which the base OABC and the upper surface DEFG are identical horizontal squares. The parallelograms OAED and CBFG both lie in vertical planes. The point M is the mid-point of AF.

Unit vectors  $\mathbf{i}$  and  $\mathbf{j}$  are parallel to OA and OC respectively and the unit vector  $\mathbf{k}$  is vertically upwards. The position vectors of A and D are given by  $\overrightarrow{OA} = 8\mathbf{i}$  and  $\overrightarrow{OD} = 3\mathbf{i} + 10\mathbf{k}$ .

Express each of the vectors $\overrightarrow{AM}$ and $\overrightarrow{GM}$ in terms of <b>i</b> , <b>j</b> and <b>k</b> .	[3]
***	





	40
	 9
	,
**	 
	 ,





 $367.\ 9709_s19_qp_12\ Q:\ 8$ 

The position vectors of points A and B, relative to an origin O, are given by

$$\overrightarrow{OA} = \begin{pmatrix} 6 \\ -2 \\ -6 \end{pmatrix}$$
 and  $\overrightarrow{OB} = \begin{pmatrix} 3 \\ k \\ -3 \end{pmatrix}$ ,

where k is a constant.

(i)	) Find the value of $k$ for which angle $AOB$ is $90^{\circ}$ .	[2]
		<u></u>
		<b>)</b>
(ii)	) Find the values of $k$ for which the lengths of $OA$ and $OB$ are equal.	[2]
(ii)	Find the values of $k$ for which the lengths of $OA$ and $OB$ are equal.	[2]
(ii)	Find the values of $k$ for which the lengths of $OA$ and $OB$ are equal.	[2]
(ii)	Find the values of $k$ for which the lengths of $OA$ and $OB$ are equal.	[2]
(ii)	Find the values of $k$ for which the lengths of $OA$ and $OB$ are equal.	[2]
(ii)	Find the values of k for which the lengths of OA and OB are equal.	[2]
(ii)	Find the values of k for which the lengths of OA and OB are equal.	[2]
(ii)	Find the values of k for which the lengths of OA and OB are equal.	[2]
(ii)	Find the values of k for which the lengths of OA and OB are equal.	[2]





The point C is such that  $\overrightarrow{AC} = 2\overrightarrow{CB}$ .

ii)	In the case where $k = 4$ , find the unit vector in the direction of $\overrightarrow{OC}$ .	[4]
		•••••
		••••
		•••••
		••••
	<b>/ (7)</b>	
		••••
		•••••
		••••
		•••••
		••••





368. 9709_s19_qp_12 Q: 9

The curve $C_1$ has equation $y = x^2 - 4x + 7$ . The curve $C_2$ has equation $y^2 = 4x + k$ , where $k$ is constant. The tangent to $C_1$ at the point where $x = 3$ is also the tangent to $C_2$ at the point $P$ . Find the value of $k$ and the coordinates of $P$ .
7.9
**





<u></u>
٥٥
A # 10





 $369.\ 9709_s19_qp_13\ Q:6$ 



The diagram shows a solid figure ABCDEF in which the horizontal base ABC is a triangle right-angled at A. The lengths of AB and AC are 8 units and 4 units respectively and M is the mid-point of AB. The point D is 7 units vertically above A. Triangle DEF lies in a horizontal plane with DE, DF and FE parallel to AB, AC and CB respectively and N is the mid-point of FE. The lengths of DE and DF are 4 units and 2 units respectively. Unit vectors  $\mathbf{i}$ ,  $\mathbf{j}$  and  $\mathbf{k}$  are parallel to  $\overrightarrow{AB}$ ,  $\overrightarrow{AC}$  and  $\overrightarrow{AD}$  respectively.

(i)	Find $MF$ in terms of ${f i},{f j}$ and ${f k}.$	[1]
	<i>-</i> 0	
(ii)	Find $\overrightarrow{FN}$ in terms of <b>i</b> and <b>j</b> .	[1]
	**	
(iii)	Find $\overrightarrow{MN}$ in terms of $\mathbf{i}$ , $\mathbf{j}$ and $\mathbf{k}$ .	[1]
		•••••
		•••••





Use a scalar product to find angle $FMN$ .	[4
	. (7) ₁₁
40)	
	•••••
****	







 $370.\ 9709_s19_qp_13\ Q:\ 8$ 

A curve is such that $\frac{dy}{dx} = 3x^2 + ax + b$ . The curve has stationary points at $(-1, 2)$ and $(3, k)$ . Find the values of the constants $a$ , $b$ and $k$ .
39
7.0
<b>40</b> 7





<u></u>
A E B







 $371.\ 9709_w19_qp_11\ Q:\ 2$ 

An increasing function, f, is defined for $x > n$ , where n is an integer. It is given that $f'(x) = x^2 - 6x + 8$ . Find the least possible value of n. [3]
<u>/</u>





 $372.\ 9709_w19_qp_11\ Q:\ 10$ 



Relative to an origin O, the position vectors of the points A, B, C and D, shown in the diagram, are given by

$$\overrightarrow{OA} = \begin{pmatrix} -1 \\ 3 \\ -4 \end{pmatrix}, \quad \overrightarrow{OB} = \begin{pmatrix} 2 \\ -3 \\ 5 \end{pmatrix}, \quad \overrightarrow{OC} = \begin{pmatrix} 4 \\ -2 \\ 5 \end{pmatrix} \quad \text{and} \quad \overrightarrow{OD} = \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}.$$

(1)	Show that $AB$ is perpendicular to $BC$ .	[3]
	10	•••
	XV.	••••
		•••
		· • • •
	NOOK TO THE PARTY OF THE PARTY	· • • •
(ii)	Show that ABCD is a trapezium.	[3]
		· • • •
		· • • • •
		· • • •
		· • • •
		· • • •











373. 9709_w19_qp_12 Q: 5



The diagram shows a solid cone which has a slant height of  $15\,\mathrm{cm}$  and a vertical height of  $h\,\mathrm{cm}$ .

(i)	Show that the volume, $V \text{ cm}^3$ , of the cone is given by $V = \frac{1}{3}\pi(225h - h^3)$ .	[2]
	[The volume of a cone of radius $r$ and vertical height $h$ is $\frac{1}{3}\pi r^2 h$ .]	10
	*	
	100	







Given that $h$ can vary, find the value of $h$ for which $V$ has a stationary value. Determine, stall necessary working, the nature of this stationary value.	nowing [5]
	•••••
	••••••
	•••••
	•••••





 $374.\ 9709_w19_qp_12\ Q:\ 7$ 

(i)



The diagram shows a three-dimensional shape OABCDEFG. The base OABC and the upper surface DEFG are identical horizontal rectangles. The parallelograms OAED and CBFG both lie in vertical planes. Points P and Q are the mid-points of OD and GF respectively. Unit vectors  $\mathbf{i}$  and  $\mathbf{j}$  are parallel to  $\overrightarrow{OA}$  and  $\overrightarrow{OC}$  respectively and the unit vector  $\mathbf{k}$  is vertically upwards. The position vectors of A, C and D are given by  $\overrightarrow{OA} = 6\mathbf{i}$ ,  $\overrightarrow{OC} = 8\mathbf{j}$  and  $\overrightarrow{OD} = 2\mathbf{i} + 10\mathbf{k}$ .

Express each of the vectors $\overrightarrow{PB}$ and $\overrightarrow{PQ}$ in terms of $\mathbf{i}$ , $\mathbf{j}$ and $\mathbf{k}$ .	[4]
100	
***	







ii) Determine whethe	er $P$ is nearer to $Q$ or to	В.		[2
				0.
) Use a scalar produ	act to find angle <i>BPQ</i> .		\ C	<b>)</b>
			<u> </u>	
				•••••
		Co		
		0		
	10.0			
				•••••
••				
				•••••





 $375.\ 9709_w19_qp_13\ Q:\ 3$ 

The equation of a curve is $y = x^3 + x^2 - 8x + 7$ . The curve has no stationary points in the interval $a < x < b$ . Find the least possible value of $a$ and the greatest possible value of $b$ . [4]		
••		





 $376. 9709 w19 qp_13 Q: 5$ 



The dimensions of a cuboid are x cm, 2x cm and 4x cm, as shown in the diagram.

(i)	Show that the surface a	rea $S  \text{cm}^2$ and the	volume $V\mathrm{cm}^3$ a	re connected by	the relation
(1)	bilow that the surface a	area of emit and the	volume v cm a	iic connected by	the relation

$S=7V^{\frac{7}{3}}.$	.0	[3]
	10	
<b>*</b>	0	•••••
		· • • • • • • • • • • • • • • • • • • •
	••••••	
	••••••	•••••
		•••••
		•••••





When the volume of the cuboid is 1000 cm ³ the surface rate of increase of the volume at this instant.	[4
	40
	<b>.</b> .
	<del></del>
•	





377. 9709_w19_qp_13 Q: 10

Relative to an origin O, the position vectors of the points A, B and X are given by

$$\overrightarrow{OA} = \begin{pmatrix} -8 \\ -4 \\ 2 \end{pmatrix}, \quad \overrightarrow{OB} = \begin{pmatrix} 10 \\ 2 \\ 11 \end{pmatrix} \quad \text{and} \quad \overrightarrow{OX} = \begin{pmatrix} -2 \\ -2 \\ 5 \end{pmatrix}.$$

(i)	Find $\overrightarrow{AX}$ and show that $AXB$ is a straight line.	[3]
		<i>O</i> -





The position vector of a point C is given by  $\overrightarrow{OC} = \begin{pmatrix} 1 \\ -8 \\ 3 \end{pmatrix}$ .

(ii)	Show that $CX$ is perpendicular to $AX$ .		[3]
			70
		•	
iii)	Find the area of triangle $ABC$ .	Car	[3]
		~~	
		Q	
	<b>10</b> 00		





 $378.\ 9709_m18_qp_12\ Q:\ 7$ 





Fig. 1 shows a rectangle with sides of 7 units and 3 units from which a triangular corner has been removed, leaving a 5-sided polygon OABCD. The sides OA, AB, BC and DO have lengths of 7 units, 3 units, 3 units and 2 units respectively. Fig. 2 shows the polygon OABCD forming the horizontal base of a pyramid in which the point E is 8 units vertically above D. Unit vectors  $\mathbf{i}$ ,  $\mathbf{j}$  and  $\mathbf{k}$  are parallel to OA, OD and DE respectively.

Find CE and the length of CE.	
	•
•	





Use a scalar product to find angle ECA, giving your answer in the form $\cos^{-1}\left(\frac{m}{\sqrt{n}}\right)$ , where
and $n$ are integers.







379. 9709_m18_qp_12 Q: 8

A curve has equation $y =$	$\frac{1}{2}x^2$ -	$4x^{\frac{3}{2}}$	+ 8 <i>x</i> .
----------------------------	--------------------	--------------------	----------------

Find the <i>x</i> -coordinates of the stationary points.	[:
	29
	<b>)</b>
~~	
~0	
A00	
**	





(ii)	Find $\frac{d^2y}{dx^2}$ . [1]
(iii)	Find, showing all necessary working, the nature of each stationary point. [2]





 $380.\ 9709_m18_qp_12\ Q\!:\,10$ 

Functions f and g are defined by

$$f(x) = \frac{8}{x-2} + 2 \quad \text{for } x > 2,$$
  
$$g(x) = \frac{8}{x-2} + 2 \quad \text{for } 2 < x < 4.$$

(i)	(a)	State the range of the function f.	[1]
	<b>(b)</b>	State the range of the function g.	[1]
	(c)	State the range of the function fg.	[1]
(ii)	Exp	plain why the function gf cannot be formed.	[1]
	•••••		•••••
	•••••		•••••





	•••••			
•••••	•••••			•••••
	•••••			
•••••	•••••			
		- 4	7	
••••••	•••••			•••••
		<b>~</b>		
44. 1				
•••••				





 $381.\ 9709_s18_qp_11\ \ Q:\ 2$ 

A point is moving along the curve $y = 2x + \frac{5}{x}$ in such a way that the x-coordinate is increasing at a
constant rate of 0.02 units per second. Find the rate of change of the y-coordinate when $x = 1$ . [4]
10)
XO.
6,9
VO.0.





 $382.\ 9709_s18_qp_11\ \ Q{:}\ 7$ 

Relative to an origin O, the position vectors of the points A, B and C are given by

$$\overrightarrow{OA} = \begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix}, \quad \overrightarrow{OB} = \begin{pmatrix} -1 \\ 3 \\ 5 \end{pmatrix} \quad \text{and} \quad \overrightarrow{OC} = \begin{pmatrix} 3 \\ 1 \\ -2 \end{pmatrix}.$$

(i)	Find $AC$ .	[1]
(ii)	The point $M$ is the mid-point of $AC$ . Find the unit vector in the direction of $\overrightarrow{OM}$ .	[3]
	.00	•••••
	***	







 •••••
•••••
. 0





 $383.\ 9709_s18_qp_12\ Q:\ 5$ 

**(i)** 



The diagram shows a three-dimensional shape. The base OAB is a horizontal triangle in which angle AOB is 90°. The side OBCD is a rectangle and the side OAD lies in a vertical plane. Unit vectors  $\mathbf{i}$  and  $\mathbf{j}$  are parallel to OA and OB respectively and the unit vector  $\mathbf{k}$  is vertical. The position vectors of A, B and D are given by  $\overrightarrow{OA} = 8\mathbf{i}$ ,  $\overrightarrow{OB} = 5\mathbf{j}$  and  $\overrightarrow{OD} = 2\mathbf{i} + 4\mathbf{k}$ .

Express each of the vectors $D\hat{A}$ and $C\hat{A}$ in terms of $\mathbf{i}$ , $\mathbf{j}$ and $\mathbf{k}$ .	[2]
	<b>V</b>
60	
**	







(ii)	Use a scalar product to find angle <i>CAD</i> .	4]
		•••
		•••
		•••
		•••
	<u> </u>	•••
	29	•••
		•••
		•••
		•••
		•••
		•••
		•••





 $384.\ 9709_s18_qp_13\ Q:\ 8$ 

The tangent to the curve $y = x^3 - 9x^2 + 24x - 12$ at a point A Find the equation of the tangent at A.	is paramet to the line $y = 2 - 3x$
	•••••
	40





## CHAPTER 7. DIFFERENTIATION

ii)	The function f is defined by $f(x) = x^3 - 9x^2 + 24x - 12$ for $x > k$ , where k is a constant. Find the smallest value of k for f to be an increasing function. [2]
	***





 $385.\ 9709_s18_qp_13\ Q:\ 9$ 



The diagram shows a pyramid OABCD with a horizontal rectangular base OABC. The sides OA and AB have lengths of 8 units and 6 units respectively. The point E on OB is such that OE = 2 units. The point E of the pyramid is 7 units vertically above E. Unit vectors  $\mathbf{i}$ ,  $\mathbf{j}$  and  $\mathbf{k}$  are parallel to OA, OC and ED respectively.

(i)	i) Show that $\overrightarrow{OE} = 1.6\mathbf{i} + 1.2\mathbf{j}$ .		[2]
		7	
	<b>XO</b>		•••••••
(ii)	i) Use a scalar product to find angle <i>BDO</i> .		[7]
	••		





## CHAPTER 7. DIFFERENTIATION

. C.
4 77
A 3.







The diagram shows a solid figure OABCDEF having a horizontal rectangular base OABC with OA = 6 units and AB = 3 units. The vertical edges OF, AD and BE have lengths 6 units, 4 units and 4 units respectively. Unit vectors  $\mathbf{i}$ ,  $\mathbf{j}$  and  $\mathbf{k}$  are parallel to OA, OC and OF respectively.

(i)	Find $DF$ .
( <b>ii</b> )	Find the unit vector in the direction of $\overrightarrow{EF}$ . [3]
	NO.







		<b>VO</b>
•••••		
	-10	
•••••	40	
	44	
	<del>~~</del>	
•••••		





 $387.\ 9709_w18_qp_11\ \ Q:\ 10$ 

A curve has equation $y = \frac{1}{2}(4x - 3)^{-1}$ . The point A on the curve has coordinates (	$1, \frac{1}{2}$	5)	
--------------------------------------------------------------------------------------------------	------------------	----	--

(i) (a)	Find and simplify the equation of the normal through $A$ .	[5]
		.0,
		O
	XC	
	309	







		•••••
		••••••
		••••••
		7
	XV.	
A po	oint is moving along the curve in such a way that as it passes through $A$ its $x$ -coor easing at the rate of 0.3 units per second. Find the rate of change of its $y$ -coordinate	dinate i e at A.
A po	oint is moving along the curve in such a way that as it passes through $A$ its $x$ -coordinate reasing at the rate of 0.3 units per second. Find the rate of change of its $y$ -coordinate	dinate i e at A. [2
A polecr	oint is moving along the curve in such a way that as it passes through $A$ its $x$ -coordinate reasing at the rate of 0.3 units per second. Find the rate of change of its $y$ -coordinate	dinate i e at A. [2
A polecr	oint is moving along the curve in such a way that as it passes through $A$ its $x$ -coordinate rate of 0.3 units per second. Find the rate of change of its $y$ -coordinate	dinate i e at A. [2
A pelecr	oint is moving along the curve in such a way that as it passes through $A$ its $x$ -coordinate reasing at the rate of 0.3 units per second. Find the rate of change of its $y$ -coordinate	dinate i e at <i>A</i> . [2
A po	oint is moving along the curve in such a way that as it passes through $A$ its $x$ -coordinate reasing at the rate of 0.3 units per second. Find the rate of change of its $y$ -coordinate	dinate i e at A. [2
A polecr		dinate i e at A. [2
A polecr		dinate i e at A. [2
A polecr		dinate i e at A. [2
A polecr		dinate i e at A. [2
A polecr		dinate i e at A. [2
A polecr		dinate i e at A. [2
A polecr		dinate i e at A. [2
A polecr		dinate i e at A. [2
A polecr		dinate i e at A. [2
A polecr		dinate i e at A. [2





388. 9709_w18_qp_12 Q: 3



The diagram shows part of the curve  $y = x(9 - x^2)$  and the line y = 5x, intersecting at the origin O and the point R. Point P lies on the line y = 5x between O and R and the x-coordinate of P is t. Point Q lies on the curve and PQ is parallel to the y-axis.

(1)	Express the length of $PQ$ in terms of $t$ , simplifying your answer.	[2
(ii)	Given that $t$ can vary, find the maximum value of the length of $PQ$ .	[3]
	.00	
		••••
		••••
		••••
		••••
		••••
		••••
		••••





 $389.\ 9709_w18_qp_12\ \ Q:\ 7$ 



The diagram shows a solid cylinder standing on a horizontal circular base with centre O and radius 4 units. Points A, B and C lie on the circumference of the base such that AB is a diameter and angle  $BOC = 90^{\circ}$ . Points P, Q and R lie on the upper surface of the cylinder vertically above A, B and C respectively. The height of the cylinder is 12 units. The mid-point of CR is M and N lies on BQ with BN = 4 units.

Unit vectors  $\mathbf{i}$  and  $\mathbf{j}$  are parallel to OB and OC respectively and the unit vector  $\mathbf{k}$  is vertically upwards.

100
***





A ( )





390. 9709_w18_qp_13 Q: 2

The function f is defined by $f(x) = x^3 + 2x^2 - 4x + 7$ for $x \ge -2$ . Determine, showing all necessary working, whether f is an increasing function, a decreasing function or neither. [4]		
20		





 $391.\ 9709_w18_qp_13\ \ Q:\ 6$ 



The diagram shows a solid figure OABCDEFG with a horizontal rectangular base OABC in which OA = 8 units and AB = 6 units. The rectangle DEFG lies in a horizontal plane and is such that D is 7 units vertically above O and DE is parallel to OA. The sides DE and DG have lengths 4 units and 2 units respectively. Unit vectors  $\mathbf{i}$ ,  $\mathbf{j}$  and  $\mathbf{k}$  are parallel to OA, OC and OD respectively. Use a scalar product to find angle OBF, giving your answer in the form  $\cos^{-1}\left(\frac{a}{b}\right)$ , where a and b are integers.

[6]
Co
<b>40</b>
100
***





***





 $392.9709_m17_qp_12$  Q: 3



The diagram shows a water container in the form of an inverted pyramid, which is such that when the height of the water level is h cm the surface of the water is a square of side  $\frac{1}{2}h$  cm.

(i)	Express the volume of water in the container in terms of $h$ . [1]
	[The volume of a pyramid having a base area $A$ and vertical height $h$ is $\frac{1}{3}Ah$ .]
	****







Water is steadily dripping into the container at a constant rate of 20 cm³ per minute.

level is 10 cm.	[4]
	40
	<u> </u>
	M.
<u>~~~</u>	
50	
<b>A O O O</b>	





 $393.\ 9709_m17_qp_12\ \ Q:\ 6$ 

Relative to an ori	gin O the $no$	osition vectors	of the points.	A and $B$ are	e given hy
Keranye to an on	ջու Ժ. աշ թ	osition vectors	of the points	a anu <i>D</i> ar	E BIVEH DV

 $\overrightarrow{OA} = 2\mathbf{i} + 3\mathbf{j} + 5\mathbf{k}$  and  $\overrightarrow{OB} = 7\mathbf{i} + 4\mathbf{j} + 3\mathbf{k}$ .

Use a scalar product to find angle $OAB$ .	[:
	,0
	XV.
-0	
40,	
A0'0'	







Find the area of triangle $OAB$ .	[2]
	Ø
	2
***	





 $394.\ 9709_m17_qp_12\ \ Q:\ 7$ 

The	function f is defined for $x \ge 0$ by $f(x) = (4x + 1)^{\frac{3}{2}}$ .
(i)	Find $f'(x)$ and $f''(x)$ . [3]
	29
	207
	A00*
The	first, second and third terms of a geometric progression are respectively $f(2)$ , $f'(2)$ and $kf''(2)$ .
(ii)	Find the value of the constant $k$ . [5]





***





 $395.\ 9709_m17_qp_12\ Q:\ 9$ 

The point $A(2, 2)$ lies on the curve $y = x^2 - 2x + 2$ .	
(i) Find the equation of the tangent to the curve at A.	[3]
	.0
	<u> </u>
The normal to the curve at $A$ intersects the curve again at $B$ .	
(ii) Find the coordinates of $B$ .	[4]





The	tangents at $A$ and $B$ intersect each other at $C$ .
(iii)	Find the coordinates of $C$ . [4]
	-00





 $396.\ 9709_s17_qp_11\ \ Q:\ 2$ 

Relative to an origin O, the position vectors of points A and B are given by

$$\overrightarrow{OA} = \begin{pmatrix} 3 \\ -6 \\ p \end{pmatrix}$$
 and  $\overrightarrow{OB} = \begin{pmatrix} 2 \\ -6 \\ -7 \end{pmatrix}$ ,

and angle  $AOB = 90^{\circ}$ .

(i)	Find the value of $p$ . [2]
	2 2 3
The	point $C$ is such that $\overrightarrow{OC} = \frac{2}{3}\overrightarrow{OA}$ .
	Find the unit vector in the direction of $\overrightarrow{BC}$ . [4]
	Find the unit vector in the direction of $\overrightarrow{BC}$ . [4]
	Find the unit vector in the direction of $\overrightarrow{BC}$ . [4]
	Find the unit vector in the direction of $\overrightarrow{BC}$ . [4]
	Find the unit vector in the direction of $\overrightarrow{BC}$ . [4]
	Find the unit vector in the direction of $\overrightarrow{BC}$ . [4]



[3]



397. 9709 $_$ s17 $_$ qp $_$ 11 Q: 6

The horizontal base of a solid prism is an equilateral triangle of side x cm. The sides of the prism are vertical. The height of the prism is h cm and the volume of the prism is  $2000 \text{ cm}^3$ .

(i) Express h in terms of x and show that the total surface area of the prism,  $A \text{ cm}^2$ , is given by

$A = \frac{\sqrt{3}}{2}x^2 + \frac{24000}{\sqrt{3}}x^{-1}.$	[3]
2 √3	
<u></u>	29





(ii)	Given that $x$ can vary, find the value of $x$ for which $A$ has a stationary value. [3]
	0-
	29
(iii)	Determine, showing all necessary working, the nature of this stationary value. [2]
	•







 $398.\ 9709_s17_qp_12\ \ Q:\ 5$ 

A curve has equation  $y = 3 + \frac{12}{2 - x}$ .

Find the equation of the tang	ent to the curve at	the point where th	e curve crosses the <i>x</i> -	axis.
				0
	••••••		. 2	<i>,</i>
				•••••
		6:0		
		<b>P</b>		
	90			•••••
				•••••
***				••••••
•				•••••
				•••••





A point moves along the curve in such a way that the $x$ -coordinate is increasing at a constant r of 0.04 units per second. Find the rate of change of the $y$ -coordinate when $x = 4$ .		
•••		
•••		
•••		
•••		
•••		
	<u>A.C.A.</u>	
•••		
•••	VOY	
•••		
•••	~0	
•••		
•••		
•••		
•••		





 $399.\ 9709_s17_qp_12\ Q:\ 8$ 

Relative to an origin O.	the position vec	ctors of three poin	nts A Rand	C are given by
<b>Relative to an origin O</b> .	, me position vec	ctors of three poil	nts A, b and	c are given by

 $\overrightarrow{OA} = 3\mathbf{i} + p\mathbf{j} - 2p\mathbf{k}$ ,  $\overrightarrow{OB} = 6\mathbf{i} + (p+4)\mathbf{j} + 3\mathbf{k}$  and  $\overrightarrow{OC} = (p-1)\mathbf{i} + 2\mathbf{j} + q\mathbf{k}$ , where p and q are constants.

In the case where $p = 2$ , use a scalar product to find angle $AOB$ .	[4]
	0
*C	
	•••••
	•••••
• * * * * * * * * * * * * * * * * * * *	••••••





0	
	70.
	<u>~~~</u>
	50







 $400.\ 9709_s17_qp_12\ Q:\ 9$ 

The equation of a curve is $y = 8\sqrt{x} - 2x$ .	
(i) Find the coordinates of the stationary point of the curve.	[3]

(ii)	Find an expression for $\frac{d^2y}{dx^2}$ and hence, or otherwise, determine the nature of the stationary point [2]







Find the values of $x$ at which the line $y = 6$ meets the curve.	
	••••••••••
	70)
*	0
•0	
State the set of values of $k$ for which the line $y = k$ does not meet the curve.	
	••••••
**	
	•••••
	• • • • • • • • • • • • • • • • • • • •





 $401.\ 9709_s17_qp_13\ \ Q:\ 4$ 

Relative to an origin O, the position vectors of points A and B are given by

$$\overrightarrow{OA} = \begin{pmatrix} 5\\1\\3 \end{pmatrix}$$
 and  $\overrightarrow{OB} = \begin{pmatrix} 5\\4\\-3 \end{pmatrix}$ .

The point P lies on AB and is such that  $\overrightarrow{AP} = \frac{1}{3}\overrightarrow{AB}$ .

Find the position vector of $P$ .	[3]
	9
Find the distance <i>OP</i> .	[1]
.00	
100	
Determine whether $OP$ is perpendicular to $AB$ . Justify your answer.	[2]





402. 9709_s17_qp_13 Q: 6
The line $3y + x = 25$ is a normal to the curve $y = x^2 - 5x + k$ . Find the value of the constant $k$ . [6]
. 0





	••••••
	•••••
4.1	
4.1	
4.1	
4.1	
4.1	
4.1	
4.1	





403. 9709_w17_qp_11 Q: 1
A curve has equation $y = 2x^{\frac{3}{2}} - 3x - 4x^{\frac{1}{2}} + 4$ . Find the equation of the tangent to the curve at the point (4, 0).
.0,







 $404.\ 9709_w17_qp_11\ Q:\ 2$ 

A function f is defined by $f: x \mapsto x^3 - x^2 - 8x + 5$ for $x < a$ . It is given that f is an increasing function find the largest possible value of the constant $a$ .	]
20	
**	





 $405.\ 9709_w17_qp_11\ \ Q:\ 4$ 

Machines in a factory make cardboard cones of base radius $r$ cm and vertical height $h$ cm. T	he volume,
$V  \mathrm{cm}^3$ , of such a cone is given by $V = \frac{1}{3}\pi r^2 h$ . The machines produce cones for which $h +$	r = 18.

(i)	Show that $V = 6\pi r^2 - \frac{1}{3}\pi r^3$ . [1]
(ii)	Given that $r$ can vary, find the non-zero value of $r$ for which $V$ has a stationary value and show that the stationary value is a maximum. [4]





(iii)	Find the maximum volume of a cone that can be made by these machines. [1]
(iii)	Find the maximum volume of a cone that can be made by these machines. [1]
(iii)	Find the maximum volume of a cone that can be made by these machines. [1]
(iii)	Find the maximum volume of a cone that can be made by these machines. [1]
(iii)	Find the maximum volume of a cone that can be made by these machines. [1]
(iii)	Find the maximum volume of a cone that can be made by these machines. [1]
(iii)	





 $406.\ 9709_w17_qp_11\ \ Q:\ 8$ 

of $R$ in terms of $\mathbf{p}$ and $\mathbf{q}$ , simplifyin	ig your answer.			
	•••••	•••••		•••••
	•••••			•••••
				1
	••••••	•••••	<u> </u>	CA
				• • • • • • • • • • • • • • • • • • • •
		<u>J</u>		
	-70			
	40	•••••	•••••	•••••
	0			
				•••••
	•••••	•••••	•••••	••••••
		• • • • • • • • • • • • • • • • • • • •	•••••	•••••







)	The vector $6\mathbf{i} + a\mathbf{j} + b\mathbf{k}$ has magnitude 21 and is perpendicular to $3\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$ . Find the possib values of $a$ and $b$ , showing all necessary working.
	NO.
	<u> </u>
	A30





 $407.\ 9709_w17_qp_12\ Q:\ 7$ 

Points A and B lie on the curve $y = x^2 - 4x + 7$ . Point A has coordinates $(4, 7)$ and B is the stationary
point of the curve. The equation of a line L is $y = mx - 2$ , where m is a constant.

In the case where $L$ passes through the mid-point of $AB$ , find the value of $m$ .	
	• • • • • • • • • • • • • • • • • • • •
	0
~ (	
	J
	••••••
-500	
	• • • • • • • • • • • • • • • • • • • •
**	
•• · · · · · · · · · · · · · · · · · ·	
	•••••
	•••••







Find the set of values of $m$ for which $L$ does not meet the curve.	[
	•••••
	•••••
	0.
	7
	••••••
-60-	•••••
**	





 $408.\ 9709_w17_qp_12\ Q:\ 9$ 



The diagram shows a trapezium OABC in which OA is parallel to CB. The position vectors of A and B relative to the origin O are given by  $\overrightarrow{OA} = \begin{pmatrix} 2 \\ -2 \\ -1 \end{pmatrix}$  and  $\overrightarrow{OB} = \begin{pmatrix} 6 \\ 1 \\ 1 \end{pmatrix}$ .

(i)	Show that angle $OAB$ is $90^{\circ}$ .	70	[3]
	- A		•••••
	30		
	70		•••••
			•••••
	$\Rightarrow$ $\rightarrow$		
	magnitude of $\overrightarrow{CB}$ is three times the magnitude of $\overrightarrow{OA}$ .		
(ii)	Find the position vector of $C$ .		[3]
			•••••





(iii)	Find the exact area of the trapezium $OABC$ , giving your answer in the form $a\sqrt{b}$ , where $a$ and $b$ are integers. [3]
	<i>_</i> 20





409	9709	w17	an	13	O·	4

The function f is such that $f(x) = (2x - 1)^{\frac{3}{2}} - 6x$ for $\frac{1}{2} < x < k$ , where k is a constant. Find t value of k for which f is a decreasing function.	he largest [5]
	•••••





 $410.\ 9709_w17_qp_13\ Q:\ 9$ 

Relative to an origin O, the position vectors of the points A, B and C are given by

$$\overrightarrow{OA} = \begin{pmatrix} 8 \\ -6 \\ 5 \end{pmatrix}, \quad \overrightarrow{OB} = \begin{pmatrix} -10 \\ 3 \\ -13 \end{pmatrix} \quad \text{and} \quad \overrightarrow{OC} = \begin{pmatrix} 2 \\ -3 \\ -1 \end{pmatrix}.$$

A fourth point, D, is such that the magnitudes  $|\overrightarrow{AB}|$ ,  $|\overrightarrow{BC}|$  and  $|\overrightarrow{CD}|$  are the first, second and third terms respectively of a geometric progression.

Find the magnitudes $ \overrightarrow{AB} $ , $ \overrightarrow{BC} $ and $ \overrightarrow{CD} $ .	
	. ~~





c	Given that $D$ is a point lying on the line through $B$ and $C$ , find the two possible position vector the point $D$ .
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
	•• 🔭
•	
•	
•	
•	





411. 9709_w17_qp_13 Q: 11



The diagram shows the curve  $y = (x - 1)^{\frac{1}{2}}$  and points A(1, 0) and B(5, 2) lying on the curve.

(i)	Find the equation of the line $AB$ , giving your answer in the form $y = mx + c$ .	[2]
		<b>j</b>
( <b>ii</b> )	Find, showing all necessary working, the equation of the tangent to the curve which is para <i>AB</i> .	
	AD.	[5]





iii)	Find the perpendicular distance between the line $AB$ and the tangent parallel to $AB$ . Give your answer correct to 2 decimal places. [3]
	* 0





412.  $9709 m16 qp_12 Q: 6$ 

A vacuum flask (for keeping drinks hot) is modelled as a closed cylinder in which the internal radius is r cm and the internal height is h cm. The volume of the flask is  $1000 \, \text{cm}^3$ . A flask is most efficient when the total internal surface area,  $A \, \text{cm}^2$ , is a minimum.

(i) Show that 
$$A = 2\pi r^2 + \frac{2000}{r}$$
. [3]

(ii) Given that r can vary, find the value of r, correct to 1 decimal place, for which A has a stationary value and verify that the flask is most efficient when r takes this value. [5]





**PapaCambridge** 



413.9709 m16 qp 12 Q: 7



The diagram shows a pyramid *OABC* with a horizontal triangular base *OAB* and vertical height *OC*. Angles AOB, BOC and AOC are each right angles. Unit vectors i, j and k are parallel to OA, OB and OC respectively, with OA = 4 units, OB = 2.4 units and OC = 3 units. The point P on CA is such that CP = 3 units.

(i) Show that 
$$\overrightarrow{CP} = 2.4\mathbf{i} - 1.8\mathbf{k}$$
. [2]

that 
$$\overrightarrow{CP} = 3$$
 units.

(i) Show that  $\overrightarrow{CP} = 2.4\mathbf{i} - 1.8\mathbf{k}$ . [2]

(ii) Express  $\overrightarrow{OP}$  and  $\overrightarrow{BP}$  in terms of  $\mathbf{i}$ ,  $\mathbf{j}$  and  $\mathbf{k}$ . [2]

(iii) Use a scalar product to find angle  $BPC$ . [4]

(iii) Use a scalar product to find angle BPC. [4]





 $414.\ 9709_s16_qp_11\ \ Q:\ 5$ 



A farmer divides a rectangular piece of land into 8 equal-sized rectangular sheep pens as shown in the diagram. Each sheep pen measures x m by y m and is fully enclosed by metal fencing. The farmer uses 480 m of fencing.

(i) Show that the total area of land used for the sheep pens,  $A \,\mathrm{m}^2$ , is given by

$$A = 384x - 9.6x^2. [3]$$

(ii) Given that x and y can vary, find the dimensions of each sheep pen for which the value of A is a maximum. (There is no need to verify that the value of A is a maximum.) [3]







415. 9709_s16_qp_11 Q: 8

A curve has equation  $y = 3x - \frac{4}{x}$  and passes through the points A(1, -1) and B(4, 11). At each of the points C and D on the curve, the tangent is parallel to AB. Find the equation of the perpendicular bisector of CD.







416.  $9709_s16_qp_11$  Q: 10

Relative to an origin O, the position vectors of points A, B and C are given by

$$\overrightarrow{OA} = \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix}, \quad \overrightarrow{OB} = \begin{pmatrix} 5 \\ -1 \\ k \end{pmatrix} \quad \text{and} \quad \overrightarrow{OC} = \begin{pmatrix} 2 \\ 6 \\ -3 \end{pmatrix}$$

respectively, where k is a constant.

- (i) Find the value of k in the case where angle  $AOB = 90^{\circ}$ . [2]
- (ii) Find the possible values of k for which the lengths of AB and OC are equal. [4]

The point D is such that  $\overrightarrow{OD}$  is in the same direction as  $\overrightarrow{OA}$  and has magnitude 9 units. The point E is such that  $\overrightarrow{OE}$  is in the same direction as  $\overrightarrow{OC}$  and has magnitude 14 units.







417. 9709_s16_qp_12 Q: 3

Relative to an origin O, the position vectors of points A and B are given by

$$\overrightarrow{OA} = 2\mathbf{i} - 5\mathbf{j} - 2\mathbf{k}$$
 and  $\overrightarrow{OB} = 4\mathbf{i} - 4\mathbf{j} + 2\mathbf{k}$ .

The point C is such that  $\overrightarrow{AB} = \overrightarrow{BC}$ . Find the unit vector in the direction of  $\overrightarrow{OC}$ . [4]







418. 9709_s16_qp_13 Q: 5

A curve has equation  $y = 8x + (2x - 1)^{-1}$ . Find the values of x at which the curve has a stationary point and determine the nature of each stationary point, justifying your answers. [7]







419. 9709_s16_qp_13 Q: 7

The point P(x, y) is moving along the curve  $y = x^2 - \frac{10}{3}x^{\frac{3}{2}} + 5x$  in such a way that the rate of change of y is constant. Find the values of x at the points at which the rate of change of x is equal to half the rate of change of y.







 $420.\ 9709_s16_qp_13\ Q:\ 9$ 

The position vectors of A, B and C relative to an origin O are given by

$$\overrightarrow{OA} = \begin{pmatrix} 2 \\ 3 \\ -4 \end{pmatrix}, \quad \overrightarrow{OB} = \begin{pmatrix} 1 \\ 5 \\ p \end{pmatrix} \quad \text{and} \quad \overrightarrow{OC} = \begin{pmatrix} 5 \\ 0 \\ 2 \end{pmatrix},$$

where p is a constant.

(i) Find the value of p for which the lengths of AB and CB are equal. [4]

(ii) For the case where p = 1, use a scalar product to find angle ABC. [4]







 $421.\ 9709_w16_qp_11\ Q:\ 9$ 



The diagram shows a cuboid OABCDEFG with a horizontal base OABC in which OA = 4 cm and AB = 15 cm. The height OD of the cuboid is 2 cm. The point X on AB is such that AX = 5 cm and the point P on DG is such that DP = p cm, where P is a constant. Unit vectors  $\mathbf{i}$ ,  $\mathbf{j}$  and  $\mathbf{k}$  are parallel to OA, OC and OD respectively.

- (i) Find the possible values of p such that angle  $OPX = 90^\circ$ .
- (ii) For the case where p = 9, find the unit vector in the direction of  $\overrightarrow{XP}$ . [2]
- (iii) A point Q lies on the face CBFG and is such that XQ is parallel to AG. Find  $\overrightarrow{XQ}$ . [3]







422. 9709_w16_qp_11 Q: 11

The point P(3, 5) lies on the curve  $y = \frac{1}{x-1} - \frac{9}{x-5}$ .

- (i) Find the x-coordinate of the point where the normal to the curve at P intersects the x-axis. [5]
- (ii) Find the x-coordinate of each of the stationary points on the curve and determine the nature of each stationary point, justifying your answers. [6]







 $423.\ 9709_w16_qp_12\ Q:\ 7$ 

The equation of a curve is  $y = 2 + \frac{3}{2x - 1}$ .

- (i) Obtain an expression for  $\frac{dy}{dx}$ . [2]
- (ii) Explain why the curve has no stationary points. [1]

At the point P on the curve, x = 2.

- (iii) Show that the normal to the curve at P passes through the origin. [4]
- (iv) A point moves along the curve in such a way that its *x*-coordinate is decreasing at a constant rate of 0.06 units per second. Find the rate of change of the *y*-coordinate as the point passes through *P*.

  [2]



**PapaCambridge** 

[4]



424. 9709_w16_qp_12 Q: 9

Relative to an origin O, the position vectors of the points A, B and C are given by

$$\overrightarrow{OA} = \begin{pmatrix} 2 \\ -2 \\ -1 \end{pmatrix}, \quad \overrightarrow{OB} = \begin{pmatrix} -2 \\ 3 \\ 6 \end{pmatrix} \quad \text{and} \quad \overrightarrow{OC} = \begin{pmatrix} 2 \\ 6 \\ 5 \end{pmatrix}.$$

- (i) Use a scalar product to find angle AOB.
- (ii) Find the vector which is in the same direction as  $\overrightarrow{AC}$  and of magnitude 15 units. [3]
- (iii) Find the value of the constant p for which  $\overrightarrow{pOA} + \overrightarrow{OC}$  is perpendicular to  $\overrightarrow{OB}$ . [3]







425. 9709_w16_qp_13 Q: 4

The function f is such that  $f(x) = x^3 - 3x^2 - 9x + 2$  for x > n, where n is an integer. It is given that f is an increasing function. Find the least possible value of n. [4]







 $426.\ 9709_w16_qp_13\ \ Q:\ 7$ 



The diagram shows a triangular pyramid ABCD. It is given that

$$\overrightarrow{AB} = 3\mathbf{i} + \mathbf{j} + \mathbf{k}$$
,  $\overrightarrow{AC} = \mathbf{i} - 2\mathbf{j} - \mathbf{k}$  and  $\overrightarrow{AD} = \mathbf{i} + 4\mathbf{j} - 7\mathbf{k}$ .

- (i) Verify, showing all necessary working, that each of the angles DAB, DAC and CAB is 90°. [3]
- (ii) Find the exact value of the area of the triangle *ABC*, and hence find the exact value of the volume of the pyramid. [4]

[The volume V of a pyramid of base area A and vertical height h is given by  $V = \frac{1}{3}Ah$ .]







 $427.\ 9709_s15_qp_11\ \ Q:\ 2$ 



The diagram shows the curve  $y = 2x^2$  and the points X(-2, 0) and P(p, 0). The point Q lies on the curve and PQ is parallel to the y-axis.

(i) Express the area, A, of triangle XPQ in terms of p. [2]

The point P moves along the x-axis at a constant rate of 0.02 units per second and Q moves along the curve so that PQ remains parallel to the y-axis.

(ii) Find the rate at which A is increasing when p = 2. [3]







 $428.\ 9709_s15_qp_11\ \ Q:\ 4$ 

Relative to the origin O, the position vectors of points A and B are given by

$$\overrightarrow{OA} = \begin{pmatrix} 3 \\ 0 \\ -4 \end{pmatrix}$$
 and  $\overrightarrow{OB} = \begin{pmatrix} 6 \\ -3 \\ 2 \end{pmatrix}$ .

(i) Find the cosine of angle AOB.

[3]

[4]

The position vector of C is given by  $\overrightarrow{OC} = \begin{pmatrix} k \\ -2k \\ 2k - 3 \end{pmatrix}$ .

(ii) Given that AB and OC have the same length, find the possible values of k.







429. 9709_s15_qp_11 Q: 9

The equation of a curve is  $y = x^3 + px^2$ , where p is a positive constant.

- (i) Show that the origin is a stationary point on the curve and find the coordinates of the other stationary point in terms of p. [4]
- (ii) Find the nature of each of the stationary points. [3]

Another curve has equation  $y = x^3 + px^2 + px$ .

(iii) Find the set of values of p for which this curve has no stationary points. [3]







 $430.\ 9709_s15_qp_12\ Q:\ 2$ 



In the diagram, AYB is a semicircle with AB as diameter and OAXB is a sector of a circle with centre O and radius r. Angle  $AOB = 2\theta$  radians. Find an expression, in terms of r and  $\theta$ , for the area of the shaded region. [4]





431. 9709_s15_qp_12 Q: 4

Variables u, x and y are such that u = 2x(y - x) and x + 3y = 12. Express u in terms of x and hence find the stationary value of u. [5]





[4]



 $432.\ 9709_s15_qp_12\ Q:\ 9$ 

Relative to an origin O, the position vectors of points A and B are given by

$$\overrightarrow{OA} = 2\mathbf{i} + 4\mathbf{j} + 4\mathbf{k}$$
 and  $\overrightarrow{OB} = 3\mathbf{i} + \mathbf{j} + 4\mathbf{k}$ .

(i) Use a vector method to find angle *AOB*.

The point C is such that  $\overrightarrow{AB} = \overrightarrow{BC}$ .

(ii) Find the unit vector in the direction of  $\overrightarrow{OC}$ . [4]

(iii) Show that triangle OAC is isosceles. [1]





 $433.\ 9709_s15_qp_13\ Q:\ 5$ 

Relative to an origin O, the position vectors of the points A, B and C are given by

$$\overrightarrow{OA} = \begin{pmatrix} 3 \\ 2 \\ -3 \end{pmatrix}, \quad \overrightarrow{OB} = \begin{pmatrix} 5 \\ -1 \\ -2 \end{pmatrix} \quad \text{and} \quad \overrightarrow{OC} = \begin{pmatrix} 6 \\ 1 \\ 2 \end{pmatrix}.$$

- (i) Show that angle ABC is  $90^{\circ}$ . [4]
- (ii) Find the area of triangle ABC, giving your answer correct to 1 decimal place. [3]







434.  $9709_s15_qp_13$  Q: 8

The function f is defined by  $f(x) = \frac{1}{x+1} + \frac{1}{(x+1)^2}$  for x > -1.

(i) Find 
$$f'(x)$$
. [3]

(ii) State, with a reason, whether f is an increasing function, a decreasing function or neither. [1]

The function g is defined by  $g(x) = \frac{1}{x+1} + \frac{1}{(x+1)^2}$  for x < -1.

(iii) Find the coordinates of the stationary point on the curve y = g(x). [4]







 $435.\ 9709_w15_qp_11\ \ Q{:}\ 5$ 

A curve has equation  $y = \frac{8}{x} + 2x$ .

- (i) Find  $\frac{dy}{dx}$  and  $\frac{d^2y}{dx^2}$ . [3]
- (ii) Find the coordinates of the stationary points and state, with a reason, the nature of each stationary point. [5]







 $436.\ 9709_w15_qp_11\ \ Q:\ 10$ 



The diagram shows a cuboid OABCPQRS with a horizontal base OABC in which AB = 6 cm and OA = a cm, where a is a constant. The height OP of the cuboid is 10 cm. The point T on BR is such that BT = 8 cm, and M is the mid-point of AT. Unit vectors  $\mathbf{i}$ ,  $\mathbf{j}$  and  $\mathbf{k}$  are parallel to OA, OC and OP respectively.

- (i) For the case where a = 2, find the unit vector in the direction of  $\overrightarrow{PM}$ . [4]
- (ii) For the case where angle  $ATP = \cos^{-1}(\frac{2}{7})$ , find the value of a. [5]





437. 9709_w15_qp_12 Q: 3



Fig. 1 shows an open tank in the shape of a triangular prism. The vertical ends ABE and DCF are identical isosceles triangles. Angle ABE = angle BAE = 30°. The length of AD is 40 cm. The tank is fixed in position with the open top ABCD horizontal. Water is poured into the tank at a constant rate of  $200 \,\mathrm{cm^3 \, s^{-1}}$ . The depth of water, t seconds after filling starts, is h cm (see Fig. 2).

- (i) Show that, when the depth of water in the tank is h cm, the volume, V cm³, of water in the tank is given by  $V = (40\sqrt{3})h^2$ . [3]
- (ii) Find the rate at which h is increasing when h = 5. [3]







 $438.\ 9709_w15_qp_12\ \ Q:\ 7$ 

Relative to an origin O, the position vectors of points A, B and C are given by

$$\overrightarrow{OA} = \begin{pmatrix} 0 \\ 2 \\ -3 \end{pmatrix}, \quad \overrightarrow{OB} = \begin{pmatrix} 2 \\ 5 \\ -2 \end{pmatrix} \quad \text{and} \quad \overrightarrow{OC} = \begin{pmatrix} 3 \\ p \\ q \end{pmatrix}.$$

- (i) In the case where ABC is a straight line, find the values of p and q. [4]
- (ii) In the case where angle BAC is 90°, express q in terms of p. [2]
- (iii) In the case where p = 3 and the lengths of AB and AC are equal, find the possible values of q. [3]







439. 9709_w15_qp_12 Q: 9

The curve y = f(x) has a stationary point at (2, 10) and it is given that  $f''(x) = \frac{12}{x^3}$ .

- (i) Find f(x).
- (ii) Find the coordinates of the other stationary point. [2]
- (iii) Find the nature of each of the stationary points. [2]







 $440.\ 9709_w15_qp_13\ \ Q{:}\ 5$ 

Relative to an origin O, the position vectors of the points A and B are given by

$$\overrightarrow{OA} = \begin{pmatrix} p-6\\2p-6\\1 \end{pmatrix}$$
 and  $\overrightarrow{OB} = \begin{pmatrix} 4-2p\\p\\2 \end{pmatrix}$ ,

where p is a constant.

- (i) For the case where OA is perpendicular to OB, find the value of p. [3]
- (ii) For the case where OAB is a straight line, find the vectors  $\overrightarrow{OA}$  and  $\overrightarrow{OB}$ . Find also the length of the line OA.



