TOPICAL PAST PAPER QUESTIONS WORKBOOK AS & A Level Mathematics (9709) Paper 1 [Pure Mathematics 1] , May/June 2015 - February/March 2022 Chapter 7 ## Differentiation $349.\ 9709\_m22\_qp\_12\ Q:\ 11$ | <br> | |---------------------------------------------| | | | <br> | | | | | | . 0 | | | | | | <br> | | | | <br>· · · · · · · · · · · · · · · · · · · | | | | <br> | | | | <br> | | | | <br> | | | | | | | | ••••• | | | | | | | | <br> | | | | | | | | ••••• | | | | ••••• | | | | ••••• | | | | ••••• | | | | <br>• • • • • • • • • • • • • • • • • • • • | The function f has a stationary value at x = a and is defined by $$f(x) = 4(3x - 4)^{-1} + 3x$$ for $x \ge \frac{3}{2}$ . | <b>(b)</b> | Find the value of a and determine the nature of the stationary value. | [3] | |------------|------------------------------------------------------------------------------|--------------| | | | | | | | | | | | | | | | | | | <u></u> | | | | | ŗ | | | 29 | | | | | | | | | •••••• | | | | | | | | | | | | | | (c) | The function g is defined by $g(x) = -(3x+1)^{-1} + 3x$ for $x \ge 0$ . | | | | Determine, making your reasoning clear, whether g is an increasing function, | a decreasing | | | function or neither. | [2] | | | | | | | *** | •••••• | | | | ••••••• | | | | •••••• | | | | | | | | | | | | | | | | | | | | | | If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown. | |---------------------------------------------------------------------------------------------------------------------------------| | | | | | | | | | | | | | <i>O</i> - | | | | 40 | | | | | | | | | | | | | | | | | | | | | | | | | $350.\ 9709\_s21\_qp\_12\ Q\hbox{:}\ 3$ | The equation of a curve is $y = (x - 3)\sqrt{x + 1} + 3$ . | The following points lie on the curve. | Non-exact | |------------------------------------------------------------|----------------------------------------|-----------| | values are rounded to 4 decimal places. | | | | | A(2, k) | B(2.9, 2.8025) | C(2.99, 2.9800) | D(2.999, 2.9980) | E(3, 3) | |------------|------------------------|-----------------------------------------------|--------------------------|--------------------------|--------------------------| | (a) | Find $k$ , given | ving your answer co | rrect to 4 decimal place | ces. | I | | | | | | | | | | | | | | | | | | | | | .0, | | <b>(b)</b> | Find the g | radient of $AE$ , givin | g your answer correct | to 4 decimal places. | | | | | | | | | | | | | | N. | | | | | | | | | | | | | 200 | | | | | | | 26 | | | | | gradients<br>ectively. | of $BE$ , $CE$ and $DE$ | , rounded to 4 decir | nal places, are 1.9748 | , 1.9975 and 1.999 | | (c) | | ing a reason for you<br>f the curve at the po | | llues of the four gradie | nts suggest about t<br>[ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 351. 9709\_s21\_qp\_13 Q: 2 | The function f is defined by $f(x) = \frac{1}{3}(2x-1)^{\frac{3}{2}} - 2x$ for $\frac{1}{2} < x < a$ . It is given that f is a decreasing function. | |-----------------------------------------------------------------------------------------------------------------------------------------------------| | Find the maximum possible value of the constant $a$ . [4] | | | | | | | | | | | | | | | | 20 | | | | <u> </u> | | | | 200 | | | | | | | | | | | | | | | | | | | | | | | 352. $9709 w21 qp_12 Q: 9$ The volume $V \, \mathrm{m}^3$ of a large circular mound of iron ore of radius $r \, \mathrm{m}$ is modelled by the equation $V = \frac{3}{2} \left( r - \frac{1}{2} \right)^3 - 1$ for $r \ge 2$ . Iron ore is added to the mound at a constant rate of 1.5 $\mathrm{m}^3$ per second. | Find the rate at which the radius of the mound is increasing at the instant when the radius is 5 | |--------------------------------------------------------------------------------------------------| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ** | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | , | [3] | |---|-----| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 353. 9709\_w21\_qp\_12 Q: 10 (a) The function f is defined by $f(x) = x^2 + \frac{k}{x} + 2$ for x > 0. | Given that the curve with equation $y = f(x)$ has a stationary point when $x = 2$ , find $k$ . | [3] | |------------------------------------------------------------------------------------------------|-------| | | | | | | | | | | | | | | | | | | | 0- | | | | ••••• | | | | | | | | | | | | | | | | | | | | | | | | | | ~~ | | | | ••••• | | | | | | | | ••• | | | | | | | ••••• | | | | | | | | | | | | | | | | | | ••••• | | | | | IJ) | Determine the nature of the stationary point. | [2] | |------------|---------------------------------------------------------------------------------|-------| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ••••• | | | | ••••• | | | | ••••• | | | | | | c) | Given that this is the only stationary point of the curve, find the range of f. | [2] | | <b>c</b> ) | Given that this is the only stationary point of the curve, find the range of f. | | | <b>c</b> ) | | | | c) | | | | c) | | | | <b>c</b> ) | | | | c) | | | | <b>c</b> ) | | | | 354. | . 9709_w21_qp_13 Q: 3 | | |------------|---------------------------------------------------------------------------------------|-----------------------------------------| | (a) | Express $5y^2 - 30y + 50$ in the form $5(y + a)^2 + b$ , where a and b are constants. | [2] | | | | | | | | | | | | | | | | • • • • • • • • • • • • • • • • • • • • | | | | | | | | | | | | | | | | | | | | | | <b>(b)</b> | The function f is defined by $f(x) = x^5 - 10x^3 + 50x$ for $x \in \mathbb{R}$ . | | | | Determine whether f is an increasing function, a decreasing function or neither. | [3] | | | <u>~~~</u> | | | | | | | | A001 | | | | | | | | | | | | | | | | | | | | | •••••• | | | | | | | | | | | | | | | | | | | | | $355.\ 9709\_m20\_qp\_12\ Q:\ 1$ | The function f is defined by $f(x) = \frac{1}{3x+2} + x^2$ for $x < -1$ . | |--------------------------------------------------------------------------------------| | Determine whether f is an increasing function, a decreasing function or neither. [3] | | | | | | | | | | | | | | | | | | | | | | | | | | ~~ | | | | | | | | | | | | | | | | | | | | | | | | 3 | 56 | 0700 | m20 | an | 19 | $\Omega$ | 4 | |---|-----|------|-----|----|----|----------|---| | o | oo. | 9709 | mzv | qρ | 12 | Q: | 4 | | A curve has equation $y = x^2 - 2x - 3$ . A point is moving along the curve in such a way that at $P$ the y-coordinate is increasing at 4 units per second and the x-coordinate is increasing at 6 units per second. | | |----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--| | Find the $x$ -coordinate of $P$ . [4] | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | *** | | | | | | | | | | | | | | | | | | | | 357. 9709\_s20\_qp\_11 Q: 9 The equation of a curve is $y = (3 - 2x)^3 + 24x$ . | (a) | Find expressions for $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ . | [4 | |-----|----------------------------------------------------------------|----------| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 60 | | | | | | | | <b>Q</b> | | | <b>V</b> 0.0 | | | | | | | | | | | | • | | | | | | | | | | | | | | | | | | | 3 | |-----------------------------------------| | 3 | | 3 | | 3 | | 3 | | 3 | | > | | 3 | | 9 | | | | | | | | | | | | | | | | | | [ | | | | ••••• | | | | ••••• | | | | | | | | • • • • • • • • • • • • • • • • • • • • | | | | | $358.\ 9709\_s20\_qp\_12\ Q:\ 3$ | A | weather | balloon | in the sh | ape of a s | phere i | s being | inflated | by a p | ump. 🛚 | Γhe v | olume ( | of the l | balloo | n is | |-----|---------|----------|------------|------------|--------------------|---------|----------|--------|--------|--------|-----------|----------|--------|------| | inc | reasing | at a con | stant rate | e of 600 c | m <sup>3</sup> per | second. | The bal | loon w | as em | pty at | t the sta | rt of p | umpir | ng. | | Find the radius of the balloon after 30 seconds. | [2 | |-----------------------------------------------------------|-----| | | | | | | | | | | | | | | 0- | | | .0 | | | .0 | | | | | | ) ` | | | | | Find the rate of increase of the radius after 30 seconds. | [3 | | | | | | | | | | | | | | | | | | | | | | | | | | | | $359.\ 9709\_s20\_qp\_12\ Q\hbox{:}\ 10$ | (a) | Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ . | [4] | |-----|---------------------------------------------------------------------|-------------| | | | | | | | | | | | ••••• | | | | ••••• | | | | <b>&gt;</b> | | | | | | | | | | (b) | Find the coordinates of each of the stationary points on the curve. | [3] | | | | | | | | | | | | | | | 100 P | | | | | | | | | | | (c) | Determine the nature of each of the stationary points. | [2] | | | | | | | | | | | | ••••• | | | | | | | | | $360.\ 9709\_s20\_qp\_13\ Q:\ 6$ | A point $P$ is moving along a curve in such a way that the $x$ -coordinate of $P$ is increasing at a constant | nt | |---------------------------------------------------------------------------------------------------------------|----| | rate of 2 units per minute. The equation of the curve is $y = (5x - 1)^{\frac{1}{2}}$ . | | | Find the rate at which the y-coordinate is increasing when $x = 1$ . | [4] | |----------------------------------------------------------------------|----------| | | | | | | | | | | | | | | | | | | | | <b>)</b> | | | | | | | | | | | | | | | | | | | | 4000 | | | | | | | | | | | | ** | | | | | | | | | | | | | | | | | | | | | | Find the value of x when the y-coordinate is increasing at $\frac{5}{8}$ units per minute. | |---|--------------------------------------------------------------------------------------------| | | | | | | | • | | | | | | | | | • | | | | | | | | | | | | • | | | | | | | | | • | | | | | | | | | | | | • | | | | | | | | | • | | | | | | | | | | | | • | | | | | | | | | | ** | | • | *** | | | | | | | | • | | | | | | | | | | | $361.\ 9709\_w20\_qp\_11\ \ Q:\ 3$ | rate of $50 \mathrm{cm}^3 \mathrm{s}^{-1}$ . | |----------------------------------------------------------------------------------------------| | Find the rate at which the radius of the balloon is increasing when the radius is 10 cm. [3] | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Air is being pumped into a balloon in the shape of a sphere so that its volume is increasing at a constant 362. 9709\_w20\_qp\_11 Q: 6 | The equation of a curve is $y = 2 + \sqrt{25 - x^2}$ . | |---------------------------------------------------------------------------------------------| | Find the coordinates of the point on the curve at which the gradient is $\frac{4}{3}$ . [5] | | | | | | | | | | | | | | | | | | | | | | | | | | ~ | | | | <b>10.0</b> | | | | | | | | | | | | | | | | | | | (a) 363. 9709\_w20\_qp\_13 Q: 8 The equation of a curve is $y = 2x + 1 + \frac{1}{2x + 1}$ for $x > -\frac{1}{2}$ . | Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ . | [3] | |------------------------------------------------|--------| | | | | | | | | | | | | | | 0, | | | | | (0) | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | •••••• | | | | | | | | •••••• | | •• | |--------|-----|-----| | | | | | | | | | | | •• | | | | | | | | ••• | | | | | | | | | | ••••• | | •• | | | | | | | | 5 | | | | | | | | | | | | •• | | | | | | | | | | ••••• | | | | | | | | | | •• | | | | | | | | | | •••••• | | •• | | | ~~~ | | | | | | | ••••• | | •• | | | | | | | | | | | | | | | ** | | | ••••• | *** | ••• | | | | | | | | | | | | | | | | | | ••••• | | •• | | | | | | | | | $364.\ 9709\_m19\_qp\_12\ Q:\ 4$ | A | curve | has e | equation | v = 0 | (2x - | $(1)^{-1}$ | +2x. | |---|-------|-------|----------|-------|-------|------------|------| |---|-------|-------|----------|-------|-------|------------|------| | Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ . | | | |------------------------------------------------|----------|-----------------------------------------| | | | • • • • • • • • • • • • • • • • • • • • | | | | | | | | | | | | | | | | | | | | <u></u> | | | | | | | | | | | | | | | | | | | | | | | <u> </u> | ••••• | | | | | | | -00 | | | | | | | | | ••••• | | | | | | •• ( | | | | • | r | | | | | | | | | | | | | | | | | | | Find the <i>x</i> -coordinates of the stationary points and, showing all necessary we the nature of each stationary point. | [4 | |----------------------------------------------------------------------------------------------------------------------------|-------| | | | | | | | | | | | | | | | | | | | | | | | | | | 0. | | | | | *(C | | | | | | 70, | | | | ••••• | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | $365.\ 9709\_m19\_qp\_12\ Q{:}\ 5$ Two vectors, $\mathbf{u}$ and $\mathbf{v}$ , are such that $$\mathbf{u} = \begin{pmatrix} q \\ 2 \\ 6 \end{pmatrix}$$ and $\mathbf{v} = \begin{pmatrix} 8 \\ q - 1 \\ q^2 - 7 \end{pmatrix}$ , where q is a constant. | Find the values of $q$ for which $\mathbf{u}$ is perpendicular to $\mathbf{v}$ . | [3] | |----------------------------------------------------------------------------------|---------| | | | | | | | | | | | | | | | | | <b></b> | | *************************************** | | | | | | <b>10</b> ° | | | | | | | | | | | | | | | | | | | | | AO O | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | , 1 | Find the angle between $\mathbf{u}$ and $\mathbf{v}$ when $q = 0$ . | |-----|---------------------------------------------------------------------| | | | | | | | | | | | | | | | | | | | | | | | 0, | | | | | | | | | | | | <b>20</b> | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | (i) $366.\ 9709\_s19\_qp\_11\ \ Q:\ 7$ The diagram shows a three-dimensional shape in which the base OABC and the upper surface DEFG are identical horizontal squares. The parallelograms OAED and CBFG both lie in vertical planes. The point M is the mid-point of AF. Unit vectors $\mathbf{i}$ and $\mathbf{j}$ are parallel to OA and OC respectively and the unit vector $\mathbf{k}$ is vertically upwards. The position vectors of A and D are given by $\overrightarrow{OA} = 8\mathbf{i}$ and $\overrightarrow{OD} = 3\mathbf{i} + 10\mathbf{k}$ . | Express each of the vectors $\overrightarrow{AM}$ and $\overrightarrow{GM}$ in terms of <b>i</b> , <b>j</b> and <b>k</b> . | [3] | |----------------------------------------------------------------------------------------------------------------------------|-----| | | | | | | | | | | | | | | | | | | | *** | | | | | | | | | | | | | | | | | | | | | | <br> | |----|-------| | | <br> | | | | | | 40 | | | <br>9 | | | , | | | | | | | | | | | | | | | | | | | | | <br> | | | | | | <br> | | ** | <br> | | | <br> | | | <br> | | | | | | | | | <br>, | $367.\ 9709\_s19\_qp\_12\ Q:\ 8$ The position vectors of points A and B, relative to an origin O, are given by $$\overrightarrow{OA} = \begin{pmatrix} 6 \\ -2 \\ -6 \end{pmatrix}$$ and $\overrightarrow{OB} = \begin{pmatrix} 3 \\ k \\ -3 \end{pmatrix}$ , where k is a constant. | (i) | ) Find the value of $k$ for which angle $AOB$ is $90^{\circ}$ . | [2] | |------|----------------------------------------------------------------------------|----------| | | | | | | | | | | | | | | | <u></u> | | | | <b>)</b> | | | | | | | | | | | | | | | | | | | | | | | | | | (ii) | ) Find the values of $k$ for which the lengths of $OA$ and $OB$ are equal. | [2] | | (ii) | Find the values of $k$ for which the lengths of $OA$ and $OB$ are equal. | [2] | | (ii) | Find the values of $k$ for which the lengths of $OA$ and $OB$ are equal. | [2] | | (ii) | Find the values of $k$ for which the lengths of $OA$ and $OB$ are equal. | [2] | | (ii) | Find the values of $k$ for which the lengths of $OA$ and $OB$ are equal. | [2] | | (ii) | Find the values of k for which the lengths of OA and OB are equal. | [2] | | (ii) | Find the values of k for which the lengths of OA and OB are equal. | [2] | | (ii) | Find the values of k for which the lengths of OA and OB are equal. | [2] | | (ii) | Find the values of k for which the lengths of OA and OB are equal. | [2] | The point C is such that $\overrightarrow{AC} = 2\overrightarrow{CB}$ . | ii) | In the case where $k = 4$ , find the unit vector in the direction of $\overrightarrow{OC}$ . | [4] | |-----|----------------------------------------------------------------------------------------------|-------| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ••••• | | | | •••• | | | | ••••• | | | | •••• | | | | | | | | | | | <b>/ (7)</b> | | | | | | | | | | | | | •••• | | | | ••••• | | | | •••• | | | | ••••• | | | | | | | | | | | | | | | | | | | | | | | | | | | | •••• | 368. 9709\_s19\_qp\_12 Q: 9 | The curve $C_1$ has equation $y = x^2 - 4x + 7$ . The curve $C_2$ has equation $y^2 = 4x + k$ , where $k$ is constant. The tangent to $C_1$ at the point where $x = 3$ is also the tangent to $C_2$ at the point $P$ . Find the value of $k$ and the coordinates of $P$ . | |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 7.9 | | | | | | | | | | | | | | ** | | | | | | | | | | | | | | | | | | <u></u> | |---------| | | | ٥٥ | | | | | | A # 10 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | $369.\ 9709\_s19\_qp\_13\ Q:6$ The diagram shows a solid figure ABCDEF in which the horizontal base ABC is a triangle right-angled at A. The lengths of AB and AC are 8 units and 4 units respectively and M is the mid-point of AB. The point D is 7 units vertically above A. Triangle DEF lies in a horizontal plane with DE, DF and FE parallel to AB, AC and CB respectively and N is the mid-point of FE. The lengths of DE and DF are 4 units and 2 units respectively. Unit vectors $\mathbf{i}$ , $\mathbf{j}$ and $\mathbf{k}$ are parallel to $\overrightarrow{AB}$ , $\overrightarrow{AC}$ and $\overrightarrow{AD}$ respectively. | (i) | Find $MF$ in terms of ${f i},{f j}$ and ${f k}.$ | [1] | |-------|---------------------------------------------------------------------------------------|-------| | | <i>-</i> 0 | | | | | | | (ii) | Find $\overrightarrow{FN}$ in terms of <b>i</b> and <b>j</b> . | [1] | | | | | | | ** | | | (iii) | Find $\overrightarrow{MN}$ in terms of $\mathbf{i}$ , $\mathbf{j}$ and $\mathbf{k}$ . | [1] | | | | ••••• | | | | | | | | ••••• | | | | | | Use a scalar product to find angle $FMN$ . | [4 | |--------------------------------------------|---------------------| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | . (7) <sub>11</sub> | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 40) | | | | | | | | | | | | | ••••• | | | | | | | | | | | **** | | | | | | | | | | | | | | | | | | | | | | | | | | | | | $370.\ 9709\_s19\_qp\_13\ Q:\ 8$ | A curve is such that $\frac{dy}{dx} = 3x^2 + ax + b$ . The curve has stationary points at $(-1, 2)$ and $(3, k)$ . Find the values of the constants $a$ , $b$ and $k$ . | |-------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | | | | | | | | | | | | | | | | | | | 39 | | | | | | | | | | | | 7.0 | | | | | | <b>40</b> 7 | | | | | | | | | | | | | | | | | | | | | | | | | | <u></u> | |---------| | | | | | | | | | | | | | | | A E B | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | $371.\ 9709\_w19\_qp\_11\ Q:\ 2$ | An increasing function, f, is defined for $x > n$ , where n is an integer. It is given that $f'(x) = x^2 - 6x + 8$ . Find the least possible value of n. [3] | |--------------------------------------------------------------------------------------------------------------------------------------------------------------| | | | | | | | | | | | | | | | | | | | | | <u>/</u> | | | | | | | | | | | | | | | | | | | | | | | $372.\ 9709\_w19\_qp\_11\ Q:\ 10$ Relative to an origin O, the position vectors of the points A, B, C and D, shown in the diagram, are given by $$\overrightarrow{OA} = \begin{pmatrix} -1 \\ 3 \\ -4 \end{pmatrix}, \quad \overrightarrow{OB} = \begin{pmatrix} 2 \\ -3 \\ 5 \end{pmatrix}, \quad \overrightarrow{OC} = \begin{pmatrix} 4 \\ -2 \\ 5 \end{pmatrix} \quad \text{and} \quad \overrightarrow{OD} = \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}.$$ | (1) | Show that $AB$ is perpendicular to $BC$ . | [3] | |------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------| | | 10 | ••• | | | XV. | •••• | | | | ••• | | | | | | | | · • • • | | | | | | | NOOK TO THE PARTY OF | · • • • | | (ii) | Show that ABCD is a trapezium. | [3] | | | | | | | | · • • • | | | | · • • • • | | | | · • • • | | | | · • • • | | | | · • • • | 373. 9709\_w19\_qp\_12 Q: 5 The diagram shows a solid cone which has a slant height of $15\,\mathrm{cm}$ and a vertical height of $h\,\mathrm{cm}$ . | (i) | Show that the volume, $V \text{ cm}^3$ , of the cone is given by $V = \frac{1}{3}\pi(225h - h^3)$ . | [2] | |-----|-----------------------------------------------------------------------------------------------------|-----| | | [The volume of a cone of radius $r$ and vertical height $h$ is $\frac{1}{3}\pi r^2 h$ .] | 10 | | | * | | | | | | | | | | | | | | | | | | | | | | | | | | | | 100 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Given that $h$ can vary, find the value of $h$ for which $V$ has a stationary value. Determine, stall necessary working, the nature of this stationary value. | nowing<br>[5] | |---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ••••• | | | | | | •••••• | | | | | | | | | ••••• | | | ••••• | | | | | | | | | | | | | | | | | | | | | | $374.\ 9709\_w19\_qp\_12\ Q:\ 7$ (i) The diagram shows a three-dimensional shape OABCDEFG. The base OABC and the upper surface DEFG are identical horizontal rectangles. The parallelograms OAED and CBFG both lie in vertical planes. Points P and Q are the mid-points of OD and GF respectively. Unit vectors $\mathbf{i}$ and $\mathbf{j}$ are parallel to $\overrightarrow{OA}$ and $\overrightarrow{OC}$ respectively and the unit vector $\mathbf{k}$ is vertically upwards. The position vectors of A, C and D are given by $\overrightarrow{OA} = 6\mathbf{i}$ , $\overrightarrow{OC} = 8\mathbf{j}$ and $\overrightarrow{OD} = 2\mathbf{i} + 10\mathbf{k}$ . | Express each of the vectors $\overrightarrow{PB}$ and $\overrightarrow{PQ}$ in terms of $\mathbf{i}$ , $\mathbf{j}$ and $\mathbf{k}$ . | [4] | |----------------------------------------------------------------------------------------------------------------------------------------|-----| | | | | | | | | | | 100 | | | | | | *** | | | | | | | | | | | | | | | | | | | | | ii) Determine whethe | er $P$ is nearer to $Q$ or to | В. | | [2 | |----------------------|--------------------------------|----|----------|----------| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 0. | | ) Use a scalar produ | act to find angle <i>BPQ</i> . | | \ C | <b>)</b> | | | | | <u> </u> | | | | | | | | | | | | | | | | | | | ••••• | | | | Co | | | | | | 0 | | | | | | | | | | | 10.0 | | | | | | | | | ••••• | | •• | | | | | | | | | | | | | | | | ••••• | | | | | | | | | | | | | | | | | | | $375.\ 9709\_w19\_qp\_13\ Q:\ 3$ | The equation of a curve is $y = x^3 + x^2 - 8x + 7$ . The curve has no stationary points in the interval $a < x < b$ . Find the least possible value of $a$ and the greatest possible value of $b$ . [4] | | | |----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | •• | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | $376. 9709 w19 qp_13 Q: 5$ The dimensions of a cuboid are x cm, 2x cm and 4x cm, as shown in the diagram. | (i) | Show that the surface a | rea $S \text{cm}^2$ and the | volume $V\mathrm{cm}^3$ a | re connected by | the relation | |-----|--------------------------|------------------------------|---------------------------|------------------|--------------| | (1) | bilow that the surface a | area of emit and the | volume v cm a | iic connected by | the relation | | $S=7V^{\frac{7}{3}}.$ | .0 | [3] | |-----------------------|--------|-----------------------------------------| | | 10 | | | <b>*</b> | 0 | ••••• | | | | · • • • • • • • • • • • • • • • • • • • | | | •••••• | | | | | | | | | | | | | | | | | | | | | | | | •••••• | ••••• | | | | ••••• | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ••••• | | | | | | When the volume of the cuboid is 1000 cm <sup>3</sup> the surface rate of increase of the volume at this instant. | [4 | |-------------------------------------------------------------------------------------------------------------------|-------------| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 40 | | | | | | | | | | | | <b>.</b> . | | | | | | <del></del> | | | | | | | | | | | | | | | | | | | | • | | | | | | | | | | | | | | | | | | | | | | | 377. 9709\_w19\_qp\_13 Q: 10 Relative to an origin O, the position vectors of the points A, B and X are given by $$\overrightarrow{OA} = \begin{pmatrix} -8 \\ -4 \\ 2 \end{pmatrix}, \quad \overrightarrow{OB} = \begin{pmatrix} 10 \\ 2 \\ 11 \end{pmatrix} \quad \text{and} \quad \overrightarrow{OX} = \begin{pmatrix} -2 \\ -2 \\ 5 \end{pmatrix}.$$ | (i) | Find $\overrightarrow{AX}$ and show that $AXB$ is a straight line. | [3] | |-----|--------------------------------------------------------------------|------------| | | | | | | | | | | | | | | | <i>O</i> - | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The position vector of a point C is given by $\overrightarrow{OC} = \begin{pmatrix} 1 \\ -8 \\ 3 \end{pmatrix}$ . | (ii) | Show that $CX$ is perpendicular to $AX$ . | | [3] | |------|-------------------------------------------|-----|-----| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 70 | | | | | | | | | • | | | | | | | | | | | | | iii) | Find the area of triangle $ABC$ . | Car | [3] | | | | ~~ | | | | | Q | | | | <b>10</b> 00 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | $378.\ 9709\_m18\_qp\_12\ Q:\ 7$ Fig. 1 shows a rectangle with sides of 7 units and 3 units from which a triangular corner has been removed, leaving a 5-sided polygon OABCD. The sides OA, AB, BC and DO have lengths of 7 units, 3 units, 3 units and 2 units respectively. Fig. 2 shows the polygon OABCD forming the horizontal base of a pyramid in which the point E is 8 units vertically above D. Unit vectors $\mathbf{i}$ , $\mathbf{j}$ and $\mathbf{k}$ are parallel to OA, OD and DE respectively. | Find CE and the length of CE. | | |-------------------------------|---| | | | | | • | | | | | | | | | | | | | | • | | | | | | | | | | | | | | | | | | Use a scalar product to find angle ECA, giving your answer in the form $\cos^{-1}\left(\frac{m}{\sqrt{n}}\right)$ , where | |---------------------------------------------------------------------------------------------------------------------------| | and $n$ are integers. | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 379. 9709\_m18\_qp\_12 Q: 8 | A curve has equation $y =$ | $\frac{1}{2}x^2$ - | $4x^{\frac{3}{2}}$ | + 8 <i>x</i> . | |----------------------------|--------------------|--------------------|----------------| |----------------------------|--------------------|--------------------|----------------| | Find the <i>x</i> -coordinates of the stationary points. | [: | |----------------------------------------------------------|----------| | | | | | | | | | | | | | | | | | | | | | | | 29 | | | | | | <b>)</b> | | | | | | | | | | | ~~ | | | ~0 | | | A00 | | | | | | ** | | | | | | | | | | | | | | | | | | | | | | | | (ii) | Find $\frac{d^2y}{dx^2}$ . [1] | |-------|-------------------------------------------------------------------------------| | | | | | | | | | | (iii) | Find, showing all necessary working, the nature of each stationary point. [2] | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | $380.\ 9709\_m18\_qp\_12\ Q\!:\,10$ Functions f and g are defined by $$f(x) = \frac{8}{x-2} + 2 \quad \text{for } x > 2,$$ $$g(x) = \frac{8}{x-2} + 2 \quad \text{for } 2 < x < 4.$$ | (i) | (a) | State the range of the function f. | [1] | |------|------------|---------------------------------------------|-------| | | | | | | | | | | | | <b>(b)</b> | State the range of the function g. | [1] | | | | | | | | | | | | | (c) | State the range of the function fg. | [1] | | | | | | | | | | | | (ii) | Exp | plain why the function gf cannot be formed. | [1] | | | | | | | | | | | | | | | | | | | | | | | | | | | | ••••• | | ••••• | | | ••••• | | ••••• | | | ••••• | | | | |--------|-------|----------|---|-------| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ••••• | ••••• | | | ••••• | | | | | | | | | | | | | | | ••••• | | | | | | | | | | | | | | | | | | | | | | | ••••• | ••••• | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - 4 | 7 | | | •••••• | ••••• | | | ••••• | | | | | | | | | | | | | | | | <b>~</b> | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 44. 1 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ••••• | | | | | | | | | | | | | | | | | | | | | | | | | | | | | $381.\ 9709\_s18\_qp\_11\ \ Q:\ 2$ | A point is moving along the curve $y = 2x + \frac{5}{x}$ in such a way that the x-coordinate is increasing at a | |-----------------------------------------------------------------------------------------------------------------| | constant rate of 0.02 units per second. Find the rate of change of the y-coordinate when $x = 1$ . [4] | | | | | | | | | | | | | | 10) | | XO. | | | | | | | | 6,9 | | | | | | VO.0. | | | | | | | | | | | | | | | | | $382.\ 9709\_s18\_qp\_11\ \ Q{:}\ 7$ Relative to an origin O, the position vectors of the points A, B and C are given by $$\overrightarrow{OA} = \begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix}, \quad \overrightarrow{OB} = \begin{pmatrix} -1 \\ 3 \\ 5 \end{pmatrix} \quad \text{and} \quad \overrightarrow{OC} = \begin{pmatrix} 3 \\ 1 \\ -2 \end{pmatrix}.$$ | (i) | Find $AC$ . | [1] | |------|-----------------------------------------------------------------------------------------------------------|-------| | | | | | | | | | | | | | | | | | | | | | (ii) | The point $M$ is the mid-point of $AC$ . Find the unit vector in the direction of $\overrightarrow{OM}$ . | [3] | | | | | | | | | | | | | | | | | | | .00 | ••••• | | | | | | | | | | | | | | | *** | | | | | | | | | | | | | | | | | | | | | | | <br> | |-----------| | | | | | | | | | | | <br>••••• | | | | <br> | | | | <br> | | | | ••••• | | | | | | | | | | . 0 | | | | | | | | | | | | | | | | <br> | | | | | | | | | | | | <br> | | | | | | | | <br> | | | | <br> | | | | | | | | | | | | | | | | | | | $383.\ 9709\_s18\_qp\_12\ Q:\ 5$ **(i)** The diagram shows a three-dimensional shape. The base OAB is a horizontal triangle in which angle AOB is 90°. The side OBCD is a rectangle and the side OAD lies in a vertical plane. Unit vectors $\mathbf{i}$ and $\mathbf{j}$ are parallel to OA and OB respectively and the unit vector $\mathbf{k}$ is vertical. The position vectors of A, B and D are given by $\overrightarrow{OA} = 8\mathbf{i}$ , $\overrightarrow{OB} = 5\mathbf{j}$ and $\overrightarrow{OD} = 2\mathbf{i} + 4\mathbf{k}$ . | Express each of the vectors $D\hat{A}$ and $C\hat{A}$ in terms of $\mathbf{i}$ , $\mathbf{j}$ and $\mathbf{k}$ . | [2] | |------------------------------------------------------------------------------------------------------------------|----------| | | <b>V</b> | | | | | 60 | | | | | | | | | | | | | | | | | | ** | | | | | | | | | | | | | | | | | | (ii) | Use a scalar product to find angle <i>CAD</i> . | 4] | |------|-------------------------------------------------|-----| | | | | | | | ••• | | | | ••• | | | | | | | | ••• | | | | ••• | | | | | | | <u> </u> | ••• | | | 29 | ••• | | | | ••• | | | | | | | | | | | | ••• | | | | ••• | | | | | | | | | | | | | | | | | | | | | | | | ••• | | | | ••• | | | | ••• | | | | | $384.\ 9709\_s18\_qp\_13\ Q:\ 8$ | The tangent to the curve $y = x^3 - 9x^2 + 24x - 12$ at a point A Find the equation of the tangent at A. | is paramet to the line $y = 2 - 3x$ | |----------------------------------------------------------------------------------------------------------|-------------------------------------| | | | | | | | | | | | | | | | | | | | | | | | ••••• | | | | | | | | | | | | | | | | | | | | | | | | | | | 40 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ## CHAPTER 7. DIFFERENTIATION | ii) | The function f is defined by $f(x) = x^3 - 9x^2 + 24x - 12$ for $x > k$ , where k is a constant. Find the smallest value of k for f to be an increasing function. [2] | |-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | *** | | | | | | | | | | | | | $385.\ 9709\_s18\_qp\_13\ Q:\ 9$ The diagram shows a pyramid OABCD with a horizontal rectangular base OABC. The sides OA and AB have lengths of 8 units and 6 units respectively. The point E on OB is such that OE = 2 units. The point E of the pyramid is 7 units vertically above E. Unit vectors $\mathbf{i}$ , $\mathbf{j}$ and $\mathbf{k}$ are parallel to OA, OC and ED respectively. | (i) | i) Show that $\overrightarrow{OE} = 1.6\mathbf{i} + 1.2\mathbf{j}$ . | | [2] | |------|----------------------------------------------------------------------|---|---------| | | | 7 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | <b>XO</b> | | ••••••• | | (ii) | i) Use a scalar product to find angle <i>BDO</i> . | | [7] | | | | | | | | | | | | | •• | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ## CHAPTER 7. DIFFERENTIATION | . C. | |------| | | | | | | | | | | | | | | | | | | | | | | | | | 4 77 | | | | | | | | | | | | | | | | | | | | | | | | | | | | A 3. | | | | | | | | | | | | | | | | | | | The diagram shows a solid figure OABCDEF having a horizontal rectangular base OABC with OA = 6 units and AB = 3 units. The vertical edges OF, AD and BE have lengths 6 units, 4 units and 4 units respectively. Unit vectors $\mathbf{i}$ , $\mathbf{j}$ and $\mathbf{k}$ are parallel to OA, OC and OF respectively. | (i) | Find $DF$ . | |---------------|----------------------------------------------------------------------| | | | | | | | | | | | | | ( <b>ii</b> ) | Find the unit vector in the direction of $\overrightarrow{EF}$ . [3] | | | NO. | | | | | | | | | | | | | | | | | | | | | | | | | <b>VO</b> | |-------|---------------|-----------| | | | | | | | | | | | | | | | | | | | | | ••••• | | | | | -10 | | | ••••• | 40 | | | | | | | | | | | | | | | | | | | | | | | | 44 | | | | <del>~~</del> | | | | | | | | | | | | | | | ••••• | | | | | | | | | | | | | | | | | | | $387.\ 9709\_w18\_qp\_11\ \ Q:\ 10$ | A curve has equation $y = \frac{1}{2}(4x - 3)^{-1}$ . The point A on the curve has coordinates ( | $1, \frac{1}{2}$ | 5) | | |--------------------------------------------------------------------------------------------------|------------------|----|--| |--------------------------------------------------------------------------------------------------|------------------|----|--| | (i) (a) | Find and simplify the equation of the normal through $A$ . | [5] | |---------|------------------------------------------------------------|-----| | | | | | | | | | | | | | | | | | | | | | | | .0, | | | | O | | | XC | | | | | | | | | | | | | | | | | | | | | | | | 309 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ••••• | |----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------| | | | | | | | | | | | •••••• | | | | | | | | | | | | •••••• | | | | | | | | | | | | 7 | | | | | | | | | | | XV. | | | | | | | | | | | | | | | A po | oint is moving along the curve in such a way that as it passes through $A$ its $x$ -coor easing at the rate of 0.3 units per second. Find the rate of change of its $y$ -coordinate | dinate i<br>e at A. | | A po | oint is moving along the curve in such a way that as it passes through $A$ its $x$ -coordinate reasing at the rate of 0.3 units per second. Find the rate of change of its $y$ -coordinate | dinate i<br>e at A.<br>[2 | | A polecr | oint is moving along the curve in such a way that as it passes through $A$ its $x$ -coordinate reasing at the rate of 0.3 units per second. Find the rate of change of its $y$ -coordinate | dinate i<br>e at A.<br>[2 | | A polecr | oint is moving along the curve in such a way that as it passes through $A$ its $x$ -coordinate rate of 0.3 units per second. Find the rate of change of its $y$ -coordinate | dinate i<br>e at A.<br>[2 | | A pelecr | oint is moving along the curve in such a way that as it passes through $A$ its $x$ -coordinate reasing at the rate of 0.3 units per second. Find the rate of change of its $y$ -coordinate | dinate i<br>e at <i>A</i> .<br>[2 | | A po | oint is moving along the curve in such a way that as it passes through $A$ its $x$ -coordinate reasing at the rate of 0.3 units per second. Find the rate of change of its $y$ -coordinate | dinate i<br>e at A.<br>[2 | | A polecr | | dinate i<br>e at A.<br>[2 | | A polecr | | dinate i<br>e at A.<br>[2 | | A polecr | | dinate i<br>e at A.<br>[2 | | A polecr | | dinate i<br>e at A.<br>[2 | | A polecr | | dinate i e at A. [2 | | A polecr | | dinate i<br>e at A.<br>[2 | | A polecr | | dinate i e at A. [2 | | A polecr | | dinate i e at A. [2 | | A polecr | | dinate i e at A. [2 | | A polecr | | dinate i e at A. [2 | 388. 9709\_w18\_qp\_12 Q: 3 The diagram shows part of the curve $y = x(9 - x^2)$ and the line y = 5x, intersecting at the origin O and the point R. Point P lies on the line y = 5x between O and R and the x-coordinate of P is t. Point Q lies on the curve and PQ is parallel to the y-axis. | (1) | Express the length of $PQ$ in terms of $t$ , simplifying your answer. | [2 | |------|-------------------------------------------------------------------------|------| | | | | | | | | | | | | | (ii) | Given that $t$ can vary, find the maximum value of the length of $PQ$ . | [3] | | | .00 | | | | | | | | | | | | | •••• | | | | •••• | | | | •••• | | | | •••• | | | | •••• | | | | •••• | | | | •••• | $389.\ 9709\_w18\_qp\_12\ \ Q:\ 7$ The diagram shows a solid cylinder standing on a horizontal circular base with centre O and radius 4 units. Points A, B and C lie on the circumference of the base such that AB is a diameter and angle $BOC = 90^{\circ}$ . Points P, Q and R lie on the upper surface of the cylinder vertically above A, B and C respectively. The height of the cylinder is 12 units. The mid-point of CR is M and N lies on BQ with BN = 4 units. Unit vectors $\mathbf{i}$ and $\mathbf{j}$ are parallel to OB and OC respectively and the unit vector $\mathbf{k}$ is vertically upwards. | 100 | |-----| | | | | | *** | | | | | | | | | | | | A ( ) | |-------| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 390. 9709\_w18\_qp\_13 Q: 2 | The function f is defined by $f(x) = x^3 + 2x^2 - 4x + 7$ for $x \ge -2$ . Determine, showing all necessary working, whether f is an increasing function, a decreasing function or neither. [4] | | | |-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 20 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | $391.\ 9709\_w18\_qp\_13\ \ Q:\ 6$ The diagram shows a solid figure OABCDEFG with a horizontal rectangular base OABC in which OA = 8 units and AB = 6 units. The rectangle DEFG lies in a horizontal plane and is such that D is 7 units vertically above O and DE is parallel to OA. The sides DE and DG have lengths 4 units and 2 units respectively. Unit vectors $\mathbf{i}$ , $\mathbf{j}$ and $\mathbf{k}$ are parallel to OA, OC and OD respectively. Use a scalar product to find angle OBF, giving your answer in the form $\cos^{-1}\left(\frac{a}{b}\right)$ , where a and b are integers. | [6] | |-----------| | | | Co | | | | <b>40</b> | | 100 | | | | | | *** | | | | | | | | | | | | *** | |-----| | | | | | | | | | | $392.9709_m17_qp_12$ Q: 3 The diagram shows a water container in the form of an inverted pyramid, which is such that when the height of the water level is h cm the surface of the water is a square of side $\frac{1}{2}h$ cm. | (i) | Express the volume of water in the container in terms of $h$ . [1] | |-----|-----------------------------------------------------------------------------------------------| | | [The volume of a pyramid having a base area $A$ and vertical height $h$ is $\frac{1}{3}Ah$ .] | | | **** | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Water is steadily dripping into the container at a constant rate of 20 cm<sup>3</sup> per minute. | level is 10 cm. | [4] | |-----------------|----------| | | | | | | | | | | | | | | | | | | | | | | | 40 | | | <u> </u> | | | | | | M. | | | | | <u>~~~</u> | | | | | | 50 | | | | | | <b>A O O O</b> | | | | | | | | | | | | | | | | | | | | | | | | | | $393.\ 9709\_m17\_qp\_12\ \ Q:\ 6$ | Relative to an ori | gin O the $no$ | osition vectors | of the points. | A and $B$ are | e given hy | |--------------------|----------------|-----------------|----------------|-------------------|------------| | Keranye to an on | ջու Ժ. աշ թ | osition vectors | of the points | a anu <i>D</i> ar | E BIVEH DV | $\overrightarrow{OA} = 2\mathbf{i} + 3\mathbf{j} + 5\mathbf{k}$ and $\overrightarrow{OB} = 7\mathbf{i} + 4\mathbf{j} + 3\mathbf{k}$ . | Use a scalar product to find angle $OAB$ . | [: | |--------------------------------------------|-----| | | | | | | | | | | | | | | | | | | | | | | | ,0 | | | | | | | | | XV. | | | | | | | | | | | | | | | | | | | | -0 | | | 40, | | | A0'0' | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Find the area of triangle $OAB$ . | [2] | |-----------------------------------|-----| | | | | | | | | | | | | | | | | | | | | Ø | | | 2 | | | | | | | | | | | | | | | | | | | | | | | *** | | | | | | | | | | | | | | | | | $394.\ 9709\_m17\_qp\_12\ \ Q:\ 7$ | The | function f is defined for $x \ge 0$ by $f(x) = (4x + 1)^{\frac{3}{2}}$ . | |------|------------------------------------------------------------------------------------------------------------| | (i) | Find $f'(x)$ and $f''(x)$ . [3] | | | | | | | | | | | | | | | | | | | | | | | | 29 | | | | | | | | | | | | | | | | | | | | | 207 | | | A00* | | | | | The | first, second and third terms of a geometric progression are respectively $f(2)$ , $f'(2)$ and $kf''(2)$ . | | (ii) | Find the value of the constant $k$ . [5] | | | | | | | | | | | | | | | | | | | | *** | |-----| | | | | | | | | | | $395.\ 9709\_m17\_qp\_12\ Q:\ 9$ | The point $A(2, 2)$ lies on the curve $y = x^2 - 2x + 2$ . | | |--------------------------------------------------------------------|----------| | (i) Find the equation of the tangent to the curve at A. | [3] | | | | | | | | | | | | | | | | | | .0 | | | <u> </u> | | | | | | | | | | | | | | | | | | | | | | | | | | The normal to the curve at $A$ intersects the curve again at $B$ . | | | (ii) Find the coordinates of $B$ . | [4] | | The | tangents at $A$ and $B$ intersect each other at $C$ . | |-------|-------------------------------------------------------| | (iii) | Find the coordinates of $C$ . [4] | | | | | | | | | | | | | | | | | | | | | -00 | | | | | | | | | | | | | | | | | | | | | | | | | $396.\ 9709\_s17\_qp\_11\ \ Q:\ 2$ Relative to an origin O, the position vectors of points A and B are given by $$\overrightarrow{OA} = \begin{pmatrix} 3 \\ -6 \\ p \end{pmatrix}$$ and $\overrightarrow{OB} = \begin{pmatrix} 2 \\ -6 \\ -7 \end{pmatrix}$ , and angle $AOB = 90^{\circ}$ . | (i) | Find the value of $p$ . [2] | |-----|---------------------------------------------------------------------------------| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 2 2 3 | | | | | The | point $C$ is such that $\overrightarrow{OC} = \frac{2}{3}\overrightarrow{OA}$ . | | | | | | Find the unit vector in the direction of $\overrightarrow{BC}$ . [4] | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Find the unit vector in the direction of $\overrightarrow{BC}$ . [4] | | | Find the unit vector in the direction of $\overrightarrow{BC}$ . [4] | | | Find the unit vector in the direction of $\overrightarrow{BC}$ . [4] | | | Find the unit vector in the direction of $\overrightarrow{BC}$ . [4] | | | Find the unit vector in the direction of $\overrightarrow{BC}$ . [4] | [3] 397. 9709 $\_$ s17 $\_$ qp $\_$ 11 Q: 6 The horizontal base of a solid prism is an equilateral triangle of side x cm. The sides of the prism are vertical. The height of the prism is h cm and the volume of the prism is $2000 \text{ cm}^3$ . (i) Express h in terms of x and show that the total surface area of the prism, $A \text{ cm}^2$ , is given by | $A = \frac{\sqrt{3}}{2}x^2 + \frac{24000}{\sqrt{3}}x^{-1}.$ | [3] | |-------------------------------------------------------------|-----| | 2 √3 | | | | | | | | | | | | | | | | | | <u></u> | 29 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | (ii) | Given that $x$ can vary, find the value of $x$ for which $A$ has a stationary value. [3] | |-------|------------------------------------------------------------------------------------------| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 0- | | | | | | 29 | | | | | | | | | | | | | | | | | | | | | | | (iii) | Determine, showing all necessary working, the nature of this stationary value. [2] | | | | | | | | | | | | | | | • | | | | | | | | | | | | | | | | | | | | | | $398.\ 9709\_s17\_qp\_12\ \ Q:\ 5$ A curve has equation $y = 3 + \frac{12}{2 - x}$ . | Find the equation of the tang | ent to the curve at | the point where th | e curve crosses the <i>x</i> - | axis. | |-------------------------------|---------------------|--------------------|--------------------------------|----------| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 0 | | | •••••• | | . 2 | <i>,</i> | | | | | | ••••• | | | | | | | | | | | | | | | | | | | | | | 6:0 | | | | | | | | | | | | <b>P</b> | | | | | | | | | | | 90 | | | ••••• | | | | | | ••••• | | *** | | | | •••••• | | • | | | | ••••• | | | | | | ••••• | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | A point moves along the curve in such a way that the $x$ -coordinate is increasing at a constant r of 0.04 units per second. Find the rate of change of the $y$ -coordinate when $x = 4$ . | | | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--| | | | | | | | | | | | | | | | | | ••• | | | | | | | | ••• | | | | | | | | | | | | ••• | | | | | | | | ••• | | | | | | | | ••• | | | | | <u>A.C.A.</u> | | | | | | | ••• | | | | | | | | ••• | VOY | | | | | | | | | | | | | | | | | | | ••• | | | | | | | | ••• | ~0 | | | | | | | | | | | ••• | | | | | | | | ••• | | | | | | | | | | | | | | | | | | | | ••• | | | | | | | | ••• | | | | | | | | | | | | | | | | | | | $399.\ 9709\_s17\_qp\_12\ Q:\ 8$ | Relative to an origin O. | the position vec | ctors of three poin | nts A Rand | C are given by | |----------------------------------|-------------------|---------------------|--------------|----------------| | <b>Relative to an origin O</b> . | , me position vec | ctors of three poil | nts A, b and | c are given by | $\overrightarrow{OA} = 3\mathbf{i} + p\mathbf{j} - 2p\mathbf{k}$ , $\overrightarrow{OB} = 6\mathbf{i} + (p+4)\mathbf{j} + 3\mathbf{k}$ and $\overrightarrow{OC} = (p-1)\mathbf{i} + 2\mathbf{j} + q\mathbf{k}$ , where p and q are constants. | In the case where $p = 2$ , use a scalar product to find angle $AOB$ . | [4] | |------------------------------------------------------------------------|--------| | | | | | | | | | | | | | | | | | | | | 0 | | *C | | | | | | | | | | ••••• | | | | | | | | | ••••• | | | | | | | | | | | | | | | | | • * * * * * * * * * * * * * * * * * * * | •••••• | | | | | | | | | | | | | | | | | | | | | | | 0 | | |---|------------| | | | | | 70. | | | | | | <u>~~~</u> | | | | | | 50 | | | | | | | | | | | | | | | | | | | | | | | | | | | | $400.\ 9709\_s17\_qp\_12\ Q:\ 9$ | The equation of a curve is $y = 8\sqrt{x} - 2x$ . | | |----------------------------------------------------------------|-----| | (i) Find the coordinates of the stationary point of the curve. | [3] | | | | | | | | (ii) | Find an expression for $\frac{d^2y}{dx^2}$ and hence, or otherwise, determine the nature of the stationary point [2] | |------|----------------------------------------------------------------------------------------------------------------------| | | | | | | | | | | Find the values of $x$ at which the line $y = 6$ meets the curve. | | |------------------------------------------------------------------------------------|-----------------------------------------| | | | | | | | | | | | | | | •••••••••• | | | | | | | | | | | | | | | | | | 70) | | * | 0 | | | | | | | | | | | | | | | | | | | | •0 | | | State the set of values of $k$ for which the line $y = k$ does not meet the curve. | | | | | | | •••••• | | | | | ** | | | | ••••• | | | | | | | | | • • • • • • • • • • • • • • • • • • • • | | | | | | | $401.\ 9709\_s17\_qp\_13\ \ Q:\ 4$ Relative to an origin O, the position vectors of points A and B are given by $$\overrightarrow{OA} = \begin{pmatrix} 5\\1\\3 \end{pmatrix}$$ and $\overrightarrow{OB} = \begin{pmatrix} 5\\4\\-3 \end{pmatrix}$ . The point P lies on AB and is such that $\overrightarrow{AP} = \frac{1}{3}\overrightarrow{AB}$ . | Find the position vector of $P$ . | [3] | |------------------------------------------------------------------------|-----| | | | | | | | | | | | | | | | | | 9 | | | | | | | | | | | | | | Find the distance <i>OP</i> . | [1] | | .00 | | | 100 | | | | | | Determine whether $OP$ is perpendicular to $AB$ . Justify your answer. | [2] | | | | | | | | | | | | | | | | | | | | | | | | | | 402. 9709_s17_qp_13 Q: 6 | |---------------------------------------------------------------------------------------------------------------| | The line $3y + x = 25$ is a normal to the curve $y = x^2 - 5x + k$ . Find the value of the constant $k$ . [6] | | | | | | | | | | | | | | | | | | | | . 0 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | •••••• | |-----|--------| | | | | | | | | | | | | | | ••••• | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 4.1 | | | | | | 4.1 | | | 4.1 | | | 4.1 | | | 4.1 | | | 4.1 | | | | | | 4.1 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 403. 9709_w17_qp_11 Q: 1 | |----------------------------------------------------------------------------------------------------------------------------------------------| | A curve has equation $y = 2x^{\frac{3}{2}} - 3x - 4x^{\frac{1}{2}} + 4$ . Find the equation of the tangent to the curve at the point (4, 0). | | | | | | | | | | | | .0, | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | $404.\ 9709\_w17\_qp\_11\ Q:\ 2$ | A function f is defined by $f: x \mapsto x^3 - x^2 - 8x + 5$ for $x < a$ . It is given that f is an increasing function find the largest possible value of the constant $a$ . | ] | |-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---| | | | | | | | | | | | | | | | | | | | 20 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ** | | | | | | | | | | | | | | | | | | | | $405.\ 9709\_w17\_qp\_11\ \ Q:\ 4$ | Machines in a factory make cardboard cones of base radius $r$ cm and vertical height $h$ cm. T | he volume, | |-------------------------------------------------------------------------------------------------------------------------|------------| | $V \mathrm{cm}^3$ , of such a cone is given by $V = \frac{1}{3}\pi r^2 h$ . The machines produce cones for which $h +$ | r = 18. | | (i) | Show that $V = 6\pi r^2 - \frac{1}{3}\pi r^3$ . [1] | |------|---------------------------------------------------------------------------------------------------------------------------------------------------| | | | | | | | | | | | | | | | | | | | | | | (ii) | Given that $r$ can vary, find the non-zero value of $r$ for which $V$ has a stationary value and show that the stationary value is a maximum. [4] | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | (iii) | Find the maximum volume of a cone that can be made by these machines. [1] | |-------|---------------------------------------------------------------------------| | (iii) | Find the maximum volume of a cone that can be made by these machines. [1] | | (iii) | Find the maximum volume of a cone that can be made by these machines. [1] | | (iii) | Find the maximum volume of a cone that can be made by these machines. [1] | | (iii) | Find the maximum volume of a cone that can be made by these machines. [1] | | (iii) | Find the maximum volume of a cone that can be made by these machines. [1] | | (iii) | | $406.\ 9709\_w17\_qp\_11\ \ Q:\ 8$ | of $R$ in terms of $\mathbf{p}$ and $\mathbf{q}$ , simplifyin | ig your answer. | | | | |---------------------------------------------------------------|-----------------|-----------------------------------------|----------|-----------------------------------------| | | | | | | | | | | | | | | ••••• | ••••• | | ••••• | | | | | | | | | | | | | | | ••••• | | | ••••• | | | | | | | | | | | | | | | | | | | | | | | | 1 | | | •••••• | ••••• | <u> </u> | CA | | | | | | | | | | | | | | | | | | • • • • • • • • • • • • • • • • • • • • | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | <u>J</u> | | | | | -70 | | | | | | 40 | ••••• | ••••• | ••••• | | | | | | | | | 0 | | | | | | | | | ••••• | | | | | | | | | | | | | | | | | | | | | | | | | | | ••••• | ••••• | ••••• | •••••• | | | | | | | | | | | | | | | | • • • • • • • • • • • • • • • • • • • • | ••••• | ••••• | | | | | | | | | | | | | | | | | | | | ) | The vector $6\mathbf{i} + a\mathbf{j} + b\mathbf{k}$ has magnitude 21 and is perpendicular to $3\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$ . Find the possib values of $a$ and $b$ , showing all necessary working. | |---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | NO. | | | | | | | | | <u> </u> | | | | | | | | | | | | A30 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | $407.\ 9709\_w17\_qp\_12\ Q:\ 7$ | Points A and B lie on the curve $y = x^2 - 4x + 7$ . Point A has coordinates $(4, 7)$ and B is the stationary | |---------------------------------------------------------------------------------------------------------------| | point of the curve. The equation of a line L is $y = mx - 2$ , where m is a constant. | | In the case where $L$ passes through the mid-point of $AB$ , find the value of $m$ . | | |--------------------------------------------------------------------------------------|-----------------------------------------| | | | | | | | | • • • • • • • • • • • • • • • • • • • • | | | | | | | | | | | | | | | | | | 0 | | | | | ~ ( | | | | J | | | | | | | | | | | | | | | •••••• | | | | | | | | | | | | | | -500 | | | | | | | | | | | | | | | | • • • • • • • • • • • • • • • • • • • • | | | | | ** | | | •• · · · · · · · · · · · · · · · · · · | | | | | | | | | | | | | ••••• | | | | | | | | | | | | | | | ••••• | | | | | Find the set of values of $m$ for which $L$ does not meet the curve. | [ | |----------------------------------------------------------------------|--------| | | | | | | | | | | | | | | | | | | | | | | | ••••• | | | ••••• | | | 0. | | | | | | 7 | | | | | | •••••• | | | | | | | | | | | | | | -60- | ••••• | | | | | | | | | | | | | | ** | | | | | | | | | | | | | | | | | | | | | | | $408.\ 9709\_w17\_qp\_12\ Q:\ 9$ The diagram shows a trapezium OABC in which OA is parallel to CB. The position vectors of A and B relative to the origin O are given by $\overrightarrow{OA} = \begin{pmatrix} 2 \\ -2 \\ -1 \end{pmatrix}$ and $\overrightarrow{OB} = \begin{pmatrix} 6 \\ 1 \\ 1 \end{pmatrix}$ . | (i) | Show that angle $OAB$ is $90^{\circ}$ . | 70 | [3] | |------|--------------------------------------------------------------------------------------------|----|-------| | | - A | | ••••• | | | 30 | | | | | | | | | | 70 | | ••••• | | | | | | | | | | | | | | | ••••• | | | $\Rightarrow$ $\rightarrow$ | | | | | magnitude of $\overrightarrow{CB}$ is three times the magnitude of $\overrightarrow{OA}$ . | | | | (ii) | Find the position vector of $C$ . | | [3] | | | | | ••••• | | | | | | | | | | | | | | | | | | | | | | | | | | | (iii) | Find the exact area of the trapezium $OABC$ , giving your answer in the form $a\sqrt{b}$ , where $a$ and $b$ are integers. [3] | |-------|--------------------------------------------------------------------------------------------------------------------------------| | | | | | | | | | | | <i>_</i> 20 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 409 | 9709 | w17 | an | 13 | O· | 4 | |-----|------|-----|----|----|----|---| | | | | | | | | | The function f is such that $f(x) = (2x - 1)^{\frac{3}{2}} - 6x$ for $\frac{1}{2} < x < k$ , where k is a constant. Find t value of k for which f is a decreasing function. | he largest [5] | |-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ••••• | | | | | | | $410.\ 9709\_w17\_qp\_13\ Q:\ 9$ Relative to an origin O, the position vectors of the points A, B and C are given by $$\overrightarrow{OA} = \begin{pmatrix} 8 \\ -6 \\ 5 \end{pmatrix}, \quad \overrightarrow{OB} = \begin{pmatrix} -10 \\ 3 \\ -13 \end{pmatrix} \quad \text{and} \quad \overrightarrow{OC} = \begin{pmatrix} 2 \\ -3 \\ -1 \end{pmatrix}.$$ A fourth point, D, is such that the magnitudes $|\overrightarrow{AB}|$ , $|\overrightarrow{BC}|$ and $|\overrightarrow{CD}|$ are the first, second and third terms respectively of a geometric progression. | Find the magnitudes $ \overrightarrow{AB} $ , $ \overrightarrow{BC} $ and $ \overrightarrow{CD} $ . | | |-----------------------------------------------------------------------------------------------------|------| | | | | | | | | | | | | | | | | | | | | . ~~ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | c | Given that $D$ is a point lying on the line through $B$ and $C$ , find the two possible position vector the point $D$ . | |---|-------------------------------------------------------------------------------------------------------------------------| | | | | | | | | | | • | | | | | | • | | | | | | • | | | | | | • | | | | | | • | | | | | | • | | | | | | • | | | | | | • | | | | | | • | | | | | | • | | | | | | • | | | | | | • | | | | | | • | | | | | | • | | | | | | • | | | | | | • | | | | | | | | | | | | • | | | | •• 🔭 | | • | | | | | | | | | | | | • | | | | | | • | | | | | | • | | | | | | | | 411. 9709\_w17\_qp\_13 Q: 11 The diagram shows the curve $y = (x - 1)^{\frac{1}{2}}$ and points A(1, 0) and B(5, 2) lying on the curve. | (i) | Find the equation of the line $AB$ , giving your answer in the form $y = mx + c$ . | [2] | |---------------|---------------------------------------------------------------------------------------------------------|----------| | | | <b>j</b> | | | | | | | | | | | | | | ( <b>ii</b> ) | Find, showing all necessary working, the equation of the tangent to the curve which is para <i>AB</i> . | | | | AD. | [5] | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | iii) | Find the perpendicular distance between the line $AB$ and the tangent parallel to $AB$ . Give your answer correct to 2 decimal places. [3] | |------|--------------------------------------------------------------------------------------------------------------------------------------------| | | * 0 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 412. $9709 m16 qp_12 Q: 6$ A vacuum flask (for keeping drinks hot) is modelled as a closed cylinder in which the internal radius is r cm and the internal height is h cm. The volume of the flask is $1000 \, \text{cm}^3$ . A flask is most efficient when the total internal surface area, $A \, \text{cm}^2$ , is a minimum. (i) Show that $$A = 2\pi r^2 + \frac{2000}{r}$$ . [3] (ii) Given that r can vary, find the value of r, correct to 1 decimal place, for which A has a stationary value and verify that the flask is most efficient when r takes this value. [5] **PapaCambridge** 413.9709 m16 qp 12 Q: 7 The diagram shows a pyramid *OABC* with a horizontal triangular base *OAB* and vertical height *OC*. Angles AOB, BOC and AOC are each right angles. Unit vectors i, j and k are parallel to OA, OB and OC respectively, with OA = 4 units, OB = 2.4 units and OC = 3 units. The point P on CA is such that CP = 3 units. (i) Show that $$\overrightarrow{CP} = 2.4\mathbf{i} - 1.8\mathbf{k}$$ . [2] that $$\overrightarrow{CP} = 3$$ units. (i) Show that $\overrightarrow{CP} = 2.4\mathbf{i} - 1.8\mathbf{k}$ . [2] (ii) Express $\overrightarrow{OP}$ and $\overrightarrow{BP}$ in terms of $\mathbf{i}$ , $\mathbf{j}$ and $\mathbf{k}$ . [2] (iii) Use a scalar product to find angle $BPC$ . [4] (iii) Use a scalar product to find angle BPC. [4] $414.\ 9709\_s16\_qp\_11\ \ Q:\ 5$ A farmer divides a rectangular piece of land into 8 equal-sized rectangular sheep pens as shown in the diagram. Each sheep pen measures x m by y m and is fully enclosed by metal fencing. The farmer uses 480 m of fencing. (i) Show that the total area of land used for the sheep pens, $A \,\mathrm{m}^2$ , is given by $$A = 384x - 9.6x^2. [3]$$ (ii) Given that x and y can vary, find the dimensions of each sheep pen for which the value of A is a maximum. (There is no need to verify that the value of A is a maximum.) [3] 415. 9709\_s16\_qp\_11 Q: 8 A curve has equation $y = 3x - \frac{4}{x}$ and passes through the points A(1, -1) and B(4, 11). At each of the points C and D on the curve, the tangent is parallel to AB. Find the equation of the perpendicular bisector of CD. 416. $9709\_s16\_qp\_11$ Q: 10 Relative to an origin O, the position vectors of points A, B and C are given by $$\overrightarrow{OA} = \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix}, \quad \overrightarrow{OB} = \begin{pmatrix} 5 \\ -1 \\ k \end{pmatrix} \quad \text{and} \quad \overrightarrow{OC} = \begin{pmatrix} 2 \\ 6 \\ -3 \end{pmatrix}$$ respectively, where k is a constant. - (i) Find the value of k in the case where angle $AOB = 90^{\circ}$ . [2] - (ii) Find the possible values of k for which the lengths of AB and OC are equal. [4] The point D is such that $\overrightarrow{OD}$ is in the same direction as $\overrightarrow{OA}$ and has magnitude 9 units. The point E is such that $\overrightarrow{OE}$ is in the same direction as $\overrightarrow{OC}$ and has magnitude 14 units. 417. 9709\_s16\_qp\_12 Q: 3 Relative to an origin O, the position vectors of points A and B are given by $$\overrightarrow{OA} = 2\mathbf{i} - 5\mathbf{j} - 2\mathbf{k}$$ and $\overrightarrow{OB} = 4\mathbf{i} - 4\mathbf{j} + 2\mathbf{k}$ . The point C is such that $\overrightarrow{AB} = \overrightarrow{BC}$ . Find the unit vector in the direction of $\overrightarrow{OC}$ . [4] 418. 9709\_s16\_qp\_13 Q: 5 A curve has equation $y = 8x + (2x - 1)^{-1}$ . Find the values of x at which the curve has a stationary point and determine the nature of each stationary point, justifying your answers. [7] 419. 9709\_s16\_qp\_13 Q: 7 The point P(x, y) is moving along the curve $y = x^2 - \frac{10}{3}x^{\frac{3}{2}} + 5x$ in such a way that the rate of change of y is constant. Find the values of x at the points at which the rate of change of x is equal to half the rate of change of y. $420.\ 9709\_s16\_qp\_13\ Q:\ 9$ The position vectors of A, B and C relative to an origin O are given by $$\overrightarrow{OA} = \begin{pmatrix} 2 \\ 3 \\ -4 \end{pmatrix}, \quad \overrightarrow{OB} = \begin{pmatrix} 1 \\ 5 \\ p \end{pmatrix} \quad \text{and} \quad \overrightarrow{OC} = \begin{pmatrix} 5 \\ 0 \\ 2 \end{pmatrix},$$ where p is a constant. (i) Find the value of p for which the lengths of AB and CB are equal. [4] (ii) For the case where p = 1, use a scalar product to find angle ABC. [4] $421.\ 9709\_w16\_qp\_11\ Q:\ 9$ The diagram shows a cuboid OABCDEFG with a horizontal base OABC in which OA = 4 cm and AB = 15 cm. The height OD of the cuboid is 2 cm. The point X on AB is such that AX = 5 cm and the point P on DG is such that DP = p cm, where P is a constant. Unit vectors $\mathbf{i}$ , $\mathbf{j}$ and $\mathbf{k}$ are parallel to OA, OC and OD respectively. - (i) Find the possible values of p such that angle $OPX = 90^\circ$ . - (ii) For the case where p = 9, find the unit vector in the direction of $\overrightarrow{XP}$ . [2] - (iii) A point Q lies on the face CBFG and is such that XQ is parallel to AG. Find $\overrightarrow{XQ}$ . [3] 422. 9709\_w16\_qp\_11 Q: 11 The point P(3, 5) lies on the curve $y = \frac{1}{x-1} - \frac{9}{x-5}$ . - (i) Find the x-coordinate of the point where the normal to the curve at P intersects the x-axis. [5] - (ii) Find the x-coordinate of each of the stationary points on the curve and determine the nature of each stationary point, justifying your answers. [6] $423.\ 9709\_w16\_qp\_12\ Q:\ 7$ The equation of a curve is $y = 2 + \frac{3}{2x - 1}$ . - (i) Obtain an expression for $\frac{dy}{dx}$ . [2] - (ii) Explain why the curve has no stationary points. [1] At the point P on the curve, x = 2. - (iii) Show that the normal to the curve at P passes through the origin. [4] - (iv) A point moves along the curve in such a way that its *x*-coordinate is decreasing at a constant rate of 0.06 units per second. Find the rate of change of the *y*-coordinate as the point passes through *P*. [2] **PapaCambridge** [4] 424. 9709\_w16\_qp\_12 Q: 9 Relative to an origin O, the position vectors of the points A, B and C are given by $$\overrightarrow{OA} = \begin{pmatrix} 2 \\ -2 \\ -1 \end{pmatrix}, \quad \overrightarrow{OB} = \begin{pmatrix} -2 \\ 3 \\ 6 \end{pmatrix} \quad \text{and} \quad \overrightarrow{OC} = \begin{pmatrix} 2 \\ 6 \\ 5 \end{pmatrix}.$$ - (i) Use a scalar product to find angle AOB. - (ii) Find the vector which is in the same direction as $\overrightarrow{AC}$ and of magnitude 15 units. [3] - (iii) Find the value of the constant p for which $\overrightarrow{pOA} + \overrightarrow{OC}$ is perpendicular to $\overrightarrow{OB}$ . [3] 425. 9709\_w16\_qp\_13 Q: 4 The function f is such that $f(x) = x^3 - 3x^2 - 9x + 2$ for x > n, where n is an integer. It is given that f is an increasing function. Find the least possible value of n. [4] $426.\ 9709\_w16\_qp\_13\ \ Q:\ 7$ The diagram shows a triangular pyramid ABCD. It is given that $$\overrightarrow{AB} = 3\mathbf{i} + \mathbf{j} + \mathbf{k}$$ , $\overrightarrow{AC} = \mathbf{i} - 2\mathbf{j} - \mathbf{k}$ and $\overrightarrow{AD} = \mathbf{i} + 4\mathbf{j} - 7\mathbf{k}$ . - (i) Verify, showing all necessary working, that each of the angles DAB, DAC and CAB is 90°. [3] - (ii) Find the exact value of the area of the triangle *ABC*, and hence find the exact value of the volume of the pyramid. [4] [The volume V of a pyramid of base area A and vertical height h is given by $V = \frac{1}{3}Ah$ .] $427.\ 9709\_s15\_qp\_11\ \ Q:\ 2$ The diagram shows the curve $y = 2x^2$ and the points X(-2, 0) and P(p, 0). The point Q lies on the curve and PQ is parallel to the y-axis. (i) Express the area, A, of triangle XPQ in terms of p. [2] The point P moves along the x-axis at a constant rate of 0.02 units per second and Q moves along the curve so that PQ remains parallel to the y-axis. (ii) Find the rate at which A is increasing when p = 2. [3] $428.\ 9709\_s15\_qp\_11\ \ Q:\ 4$ Relative to the origin O, the position vectors of points A and B are given by $$\overrightarrow{OA} = \begin{pmatrix} 3 \\ 0 \\ -4 \end{pmatrix}$$ and $\overrightarrow{OB} = \begin{pmatrix} 6 \\ -3 \\ 2 \end{pmatrix}$ . (i) Find the cosine of angle AOB. [3] [4] The position vector of C is given by $\overrightarrow{OC} = \begin{pmatrix} k \\ -2k \\ 2k - 3 \end{pmatrix}$ . (ii) Given that AB and OC have the same length, find the possible values of k. 429. 9709\_s15\_qp\_11 Q: 9 The equation of a curve is $y = x^3 + px^2$ , where p is a positive constant. - (i) Show that the origin is a stationary point on the curve and find the coordinates of the other stationary point in terms of p. [4] - (ii) Find the nature of each of the stationary points. [3] Another curve has equation $y = x^3 + px^2 + px$ . (iii) Find the set of values of p for which this curve has no stationary points. [3] $430.\ 9709\_s15\_qp\_12\ Q:\ 2$ In the diagram, AYB is a semicircle with AB as diameter and OAXB is a sector of a circle with centre O and radius r. Angle $AOB = 2\theta$ radians. Find an expression, in terms of r and $\theta$ , for the area of the shaded region. [4] 431. 9709\_s15\_qp\_12 Q: 4 Variables u, x and y are such that u = 2x(y - x) and x + 3y = 12. Express u in terms of x and hence find the stationary value of u. [5] [4] $432.\ 9709\_s15\_qp\_12\ Q:\ 9$ Relative to an origin O, the position vectors of points A and B are given by $$\overrightarrow{OA} = 2\mathbf{i} + 4\mathbf{j} + 4\mathbf{k}$$ and $\overrightarrow{OB} = 3\mathbf{i} + \mathbf{j} + 4\mathbf{k}$ . (i) Use a vector method to find angle *AOB*. The point C is such that $\overrightarrow{AB} = \overrightarrow{BC}$ . (ii) Find the unit vector in the direction of $\overrightarrow{OC}$ . [4] (iii) Show that triangle OAC is isosceles. [1] $433.\ 9709\_s15\_qp\_13\ Q:\ 5$ Relative to an origin O, the position vectors of the points A, B and C are given by $$\overrightarrow{OA} = \begin{pmatrix} 3 \\ 2 \\ -3 \end{pmatrix}, \quad \overrightarrow{OB} = \begin{pmatrix} 5 \\ -1 \\ -2 \end{pmatrix} \quad \text{and} \quad \overrightarrow{OC} = \begin{pmatrix} 6 \\ 1 \\ 2 \end{pmatrix}.$$ - (i) Show that angle ABC is $90^{\circ}$ . [4] - (ii) Find the area of triangle ABC, giving your answer correct to 1 decimal place. [3] 434. $9709\_s15\_qp\_13$ Q: 8 The function f is defined by $f(x) = \frac{1}{x+1} + \frac{1}{(x+1)^2}$ for x > -1. (i) Find $$f'(x)$$ . [3] (ii) State, with a reason, whether f is an increasing function, a decreasing function or neither. [1] The function g is defined by $g(x) = \frac{1}{x+1} + \frac{1}{(x+1)^2}$ for x < -1. (iii) Find the coordinates of the stationary point on the curve y = g(x). [4] $435.\ 9709\_w15\_qp\_11\ \ Q{:}\ 5$ A curve has equation $y = \frac{8}{x} + 2x$ . - (i) Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ . [3] - (ii) Find the coordinates of the stationary points and state, with a reason, the nature of each stationary point. [5] $436.\ 9709\_w15\_qp\_11\ \ Q:\ 10$ The diagram shows a cuboid OABCPQRS with a horizontal base OABC in which AB = 6 cm and OA = a cm, where a is a constant. The height OP of the cuboid is 10 cm. The point T on BR is such that BT = 8 cm, and M is the mid-point of AT. Unit vectors $\mathbf{i}$ , $\mathbf{j}$ and $\mathbf{k}$ are parallel to OA, OC and OP respectively. - (i) For the case where a = 2, find the unit vector in the direction of $\overrightarrow{PM}$ . [4] - (ii) For the case where angle $ATP = \cos^{-1}(\frac{2}{7})$ , find the value of a. [5] 437. 9709\_w15\_qp\_12 Q: 3 Fig. 1 shows an open tank in the shape of a triangular prism. The vertical ends ABE and DCF are identical isosceles triangles. Angle ABE = angle BAE = 30°. The length of AD is 40 cm. The tank is fixed in position with the open top ABCD horizontal. Water is poured into the tank at a constant rate of $200 \,\mathrm{cm^3 \, s^{-1}}$ . The depth of water, t seconds after filling starts, is h cm (see Fig. 2). - (i) Show that, when the depth of water in the tank is h cm, the volume, V cm<sup>3</sup>, of water in the tank is given by $V = (40\sqrt{3})h^2$ . [3] - (ii) Find the rate at which h is increasing when h = 5. [3] $438.\ 9709\_w15\_qp\_12\ \ Q:\ 7$ Relative to an origin O, the position vectors of points A, B and C are given by $$\overrightarrow{OA} = \begin{pmatrix} 0 \\ 2 \\ -3 \end{pmatrix}, \quad \overrightarrow{OB} = \begin{pmatrix} 2 \\ 5 \\ -2 \end{pmatrix} \quad \text{and} \quad \overrightarrow{OC} = \begin{pmatrix} 3 \\ p \\ q \end{pmatrix}.$$ - (i) In the case where ABC is a straight line, find the values of p and q. [4] - (ii) In the case where angle BAC is 90°, express q in terms of p. [2] - (iii) In the case where p = 3 and the lengths of AB and AC are equal, find the possible values of q. [3] 439. 9709\_w15\_qp\_12 Q: 9 The curve y = f(x) has a stationary point at (2, 10) and it is given that $f''(x) = \frac{12}{x^3}$ . - (i) Find f(x). - (ii) Find the coordinates of the other stationary point. [2] - (iii) Find the nature of each of the stationary points. [2] $440.\ 9709\_w15\_qp\_13\ \ Q{:}\ 5$ Relative to an origin O, the position vectors of the points A and B are given by $$\overrightarrow{OA} = \begin{pmatrix} p-6\\2p-6\\1 \end{pmatrix}$$ and $\overrightarrow{OB} = \begin{pmatrix} 4-2p\\p\\2 \end{pmatrix}$ , where p is a constant. - (i) For the case where OA is perpendicular to OB, find the value of p. [3] - (ii) For the case where OAB is a straight line, find the vectors $\overrightarrow{OA}$ and $\overrightarrow{OB}$ . Find also the length of the line OA.